Skip to main content
Log in

Looking for an Efficient and Safe Hyperthermia Therapy: Insights from a Partial Differential Equations Based Model

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In the present study, we formulate a boundary value problem that characterizes the light and heat transfer processes in a tissue during a hypothetical superficial hyperthermia therapy. The heating process is represented with a partial differential equations system (PDEs) consisting in the diffusion and bio-heat equations whereas the tissue damage process is modeled with the Arrhenius integral equation. The PDEs system is discretized using the method of lines to obtain an ordinary differential equations system that approximates the original PDEs. The resulting model is then numerically solved to obtain (1) the spatio-temporal distribution of both absorbed light and heat, (2) the volume of tissue effectively treated, and (3) the degree of thermal damage reached. Finally, we define an optimization problem to find a set of relevant parameter values that maximize the therapeutic effect while minimizing damage to healthy tissue. The results of this work could be useful for preclinical level research, in particular for the study of strategies that modify the physical properties of the target tissue for a safe and efficient heat therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith, R.A., Cokkinides, V., von Eschenbach, A.C., Levin, B., Cohen, C., Runowicz, C.D., Eyre, H.J.: American Cancer Society guidelines for the early detection of cancer. Cancer J. Clin. 52(1), 8–22 (2002)

    Article  Google Scholar 

  2. Sakorafas, G.H., Michael, S.: Breast cancer surgery: an historical narrative. Part III. From the sunset of the 19th to the dawn of the 21st century. Eur J. Cancer Care (Engl). 19(2), 145–166 (2010)

    Article  Google Scholar 

  3. Wust, P., et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3(8), 487–497 (2002)

    Article  Google Scholar 

  4. Lee, Henry K., et al.: Superficial hyperthermia and irradiation for recurrent breast carcinoma of the chest wall: prognostic factors in 196 tumors. Int. J. Radiat. Oncol. 40(2), 365–375 (1998)

    Article  MathSciNet  Google Scholar 

  5. DuBois, J.B., Hay, M., Bordure, G.: Superficial microwave-induced hyperthermia in the treatment of chest wall recurrences in breast cancer. Cancer 66(5), 848–852 (1990)

    Article  Google Scholar 

  6. Dahl, Olav: Status of clinical hyperthermia. Acta Oncol. 38(7), 863–873 (1999)

    Article  Google Scholar 

  7. Baronzio, G.F., Hager, E.D.: Hyperthermia In Cancer Treatment: A Primer. Springer Science & Business Media, New York (2008)

    Google Scholar 

  8. Franckena, M., Fatehi, D., de Bruijne, M., Canters, R.A., van Norden, Y., Mens, J.W., van der Zee, J.: Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur. J. Cancer 45(11), 1969–1978 (2009)

    Article  Google Scholar 

  9. Issels, R.D.: Hyperthermia adds to chemotherapy. Eur. J. Cancer 44(17), 2546–2554 (2008)

    Article  Google Scholar 

  10. Cregan, S.P., Boreham, D.R., Walker, P.R., Brown, D.L., Mitchel, R.E.J.: Modification of radiation-induced apoptosis in radiation-or hyperthermia-adapted human lymphocytes. Biochem. Cell Biol. 72(11–12), 475–482 (1994)

    Article  Google Scholar 

  11. Engin, K.: Biological rationale and clinical experience with hyperthermia. Control Clin. Trials 17(4), 316–342 (1996)

    Article  Google Scholar 

  12. Dewey, W.C.: Interaction of heat with radiation and chemotherapy. Cancer Res. 44(10 Supplement), 4714s–4720s (1984)

    Google Scholar 

  13. Coughlin, C.T., Wong, T.Z., Strohbehn, J.W., Colacchio, T.A., Sutton, J.E., Belch, R.Z., Douple, E.B.: Intraoperative interstitial microwave-induced hyperthermia and brachytherapy. Int. J. Radiat. Oncol. 11(9), 1673–1678 (1985)

    Article  Google Scholar 

  14. Roemer, R.B.: Engineering aspects of hyperthermia therapy. Annu. Rev. Biomed. Eng. 1(1), 347–376 (1999)

    Article  Google Scholar 

  15. Zhang, R., Verkruysse, W., Aguilar, G., Nelson, J.S.: Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels. Phys. Med. Biol. 50(17), 4075 (2005)

    Article  Google Scholar 

  16. Wissler, E.H.: Pennes’ 1948 paper revisited. J. Appl. Physiol. 85(1), 35–41 (1998)

    Google Scholar 

  17. Moritz, A.R., Henriques Jr, F.C.: Studies of thermal injury: II. the relative importance of time and surface temperature in the causation of cutaneous burns. Am. J. Pathol. 23(5), 695 (1947)

    Google Scholar 

  18. Shen, W., Zhang, J., Yang, F.: Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. Math. Comput. Model. 41(11), 1251–1265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karaa, S., Zhang, J., Yang, F.: A numerical study of a 3D bioheat transfer problem with different spatial heating. Math. Comput. Simul. 68(4), 375–388 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dillenseger, J.L., Esneault, S.: Fast FFT-based bioheat transfer equation computation. Comput. Biol. Med. 40(2), 119–123 (2010)

    Article  Google Scholar 

  21. Fanjul-Vélez, F., Romanov, O.G., Arce-Diego, J.L.: Efficient 3D numerical approach for temperature prediction in laser irradiated biological tissues. Comput. Biol. Med. 39(9), 810–817 (2009)

    Article  Google Scholar 

  22. Sturesson, C., Andersson-Engels, S.: A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications. Phys. Med. Biol. 40(12), 2037 (1995)

    Article  Google Scholar 

  23. Mohammed, Y., Verhey, J.F.: A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions. Biomed. Eng. OnLine 4(1), 2 (2005)

    Article  Google Scholar 

  24. Furzeland, R.M., Verwer, J.G., Zegeling, P.A.: A numerical study of three moving-grid methods for one-dimensional partial differential equations which are based on the method of lines. J. Comput. Phys. 89(2), 349–388 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khanafer, K., Bull, J.L., Pop, I., Berguer, R.: Influence of pulsatile blood flow and heating scheme on the temperature distribution during hyperthermia treatment. Int. J. Heat Mass Transf. 50(23), 4883–4890 (2007)

    Article  MATH  Google Scholar 

  26. Song, C.W., Lokshina, A., Rhee, J.G., Patten, M., Levitt, S.H.: Implication of blood flow in hyperthermic treatment of tumors. IEEE Trans. Biomed. Eng. 1, 9–16 (1984)

    Article  Google Scholar 

  27. Fujita, S., Tamazawa, M., Kuroda, K.: Effects of blood perfusion rate on the optimization of RF-capacitive hyperthermia. IEEE Trans. Biomed. Eng. 45(9), 1182–1186 (1998)

    Article  Google Scholar 

  28. Hager, E.D.: Locoregional hyperthermia. In: Hyperthermia in Cancer Treatment: A Primer, pp. 167–182. Springer, New York (2006)

  29. Niemz, M.H.: Laser-Tissue Interactions: Fundamentals and Applications. Springer Science & Business Media, New York (2007)

    Book  MATH  Google Scholar 

  30. Fasano, A., Hömberg, D., Naumov, D.: On a mathematical model for laser-induced thermotherapy. Appl. Math. Model. 34(12), 3831–3840 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, J., Zhang, A., Xu, L.X.: Evaluation of alternate cooling and heating for tumor treatment. Int. J. Heat Mass Transf. 51(23), 5478–5485 (2008)

    Article  MATH  Google Scholar 

  32. Welch, A.J., Van Gemert, M.J. (eds.): Optical-Thermal Response of Laser-irradiated Tissue, vol. 1. Plenum Press, New York (1995)

    Google Scholar 

  33. Shampine, L.F., Reichelt, M.W.: The matlab ode suite. SIAM J. Sci. comput. 18(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fletcher, R., Powell, M.J.: A rapidly convergent descent method for minimization. Comput. J. 6(2), 163–168 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, D.L., Andersson-Engels, S., Sturesson, C., Svanberg, K., Håkansson, C.H., Svanberg, S.: Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy. Cancer Lett. 111(1), 157–165 (1997)

    Article  Google Scholar 

  36. Honda, N., Ishii, K., Terada, T., Nanjo, T., Awazu, K.: Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse Monte Carlo method and double integrating sphere between 350 and 1000 nm. J. Biomed. Opt. 16(5), 058003–058003 (2011)

    Article  Google Scholar 

  37. Crochet, J.J., Gnyawali, S.C., Chen, Y., Lemley, E.C., Wang, L.V., Chen, W.R.: Temperature distribution in selective laser–tissue interaction. J. Biomed. Opt. 11(3), 034031–034031 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The author’s work was supported by Administrative Department for Science, Technology and Innovation, and the Deanship for Engineering Students, Universidad de Los Andes.

Thanks Hernán Estrada for conceiving the original idea for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Quintero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintero, M.C., Cordovez, J.M. Looking for an Efficient and Safe Hyperthermia Therapy: Insights from a Partial Differential Equations Based Model. Differ Equ Dyn Syst 25, 137–150 (2017). https://doi.org/10.1007/s12591-015-0256-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-015-0256-8

Keywords

Navigation