Advertisement

Differential Equations and Dynamical Systems

, Volume 24, Issue 2, pp 215–230 | Cite as

Disease-Induced Chaotic Oscillations and its Possible Control in a Predator–Prey System with Disease in Predator

  • Krishna pada DasEmail author
Original Research

Abstract

The effect of parasites and pathogens in prey populations received a lot of attention but disease in predator population has been studied comparatively little in literature. In the present paper we consider a predator–prey model with disease in predator population. We analyze the local stability of model system around the equilibria. We derive the ecological as well as disease basic reproduction numbers and study the community structure of model system by these numbers. We work out the conditions of Hopf bifurcation and persistence of system. Our numerical results reveals that system shows chaotic dynamics for increasing the infection in predator. It is also observe that half saturation constant is responsible for occurrence and control of chaos.

Keywords

Disease in predator Limit cycles Chaos Half-saturation constant  Basic reproduction number Hopf Bifurcation Permanence 

Notes

Acknowledgments

The authors are grateful to the reviewer for their helpful comments and suggestions.

References

  1. 1.
    Anderson, R.M., May, R.M.: The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. Lond. Ser. B291, 451–524 (1981)CrossRefGoogle Scholar
  2. 2.
    Anderson, R.M.: Transmission dynamics and control of infectious disease agents. In: Anderson, R.M., May, R.M. (eds.) Population Biology of Infectious Diseasess, pp. 149–176. Springer, Berlin (1982)CrossRefGoogle Scholar
  3. 3.
    Anderson, R.M., May, R.M.: The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond. B 314, 533–570 (1986)CrossRefGoogle Scholar
  4. 4.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Dynamics and Control. Oxford University Press, Oxford (1991)Google Scholar
  5. 5.
    Arino, O., Abdllaoui, A., Mikram, J., Chattopadhyay, J.: Infection on prey population may act as a biological control in ratio-dependent predator–prey model. Nonlinearity 17, 1101–1116 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Capasso, V., Serio, G.: A generalization of the Kermack–McKendrick deterministic epidemic model. Math. Biosci. 42, 4161 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chatterjee, S., Bandyopadhyay, M., Chattopadhyay, J.: Proper predation makes the system disease free- conclusion drawn from an eco-epidemiological model. J. Biol. Syst. 14(4), 599–616 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Coyner, D.F., Schaack, S.R., Spalding, M.G., Forrester, D.J.: Altered predation susceptibility of Mosquitofish infected with Eu- strongylides ignotus. J. Wildl. Dis. 37(3), 556–560 (2001)CrossRefGoogle Scholar
  10. 10.
    Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproductive ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dobson, A.P.: The population biology of parasite induced changes in host behaviour. Q. Rev. Biol. 63, 139–165 (1988)CrossRefGoogle Scholar
  12. 12.
    Eisenberg, J.N., Maszle, D.R.: The structural stability o f a three-species food chain model. J. Theor. Biol. 176, 501–510 (1995)CrossRefGoogle Scholar
  13. 13.
    Ebert, D., Lipsitch, M., Mangin, K.L.: The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites. Am. Nat. 156, 459477 (2000)CrossRefGoogle Scholar
  14. 14.
    Eppley, R.W., Rogers, J.N., McCarthy, J.J.: Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14(6), 912–920 (1969)CrossRefGoogle Scholar
  15. 15.
    Gilpin, M.E.: Spiral chaos in a predator–prey model. Am. Nat. 107, 306–308 (1979)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Godfrey, H.C.J., Grenfell, B.T.: The continuing quest for chaos. Trends Ecol. Evol. 8, 43–44 (1993)CrossRefGoogle Scholar
  17. 17.
    Greenhalgh, D., Haque, M.: A predator–prey model with disease in the prey species only. Math. Meth. Appl. Sci. 30, 911929 (2006)MathSciNetGoogle Scholar
  18. 18.
    Grenfell, B.T., Dobson, A.P. (eds.): Ecology of Infectious Diseases in Natural Populations. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  19. 19.
    Grenfell, B.T., Kleczkowski, A., Ellner, S.P., Bolker, B.M.: Measles as a case-study in nonlinear forecasting and chaos. Philos. Trans. R. Soc. Lond. 348, 515–530 (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Appl. Biol. 70, 273–288 (2006)zbMATHGoogle Scholar
  21. 21.
    Haque, M., Venturino, E.: An ecoepidemiological model with disease in predator: the ratio-dependent case. Math. Meth. Appl. Sci. 30, 17911809 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature (London) 223, 1133–1137 (1969)CrossRefGoogle Scholar
  23. 23.
    Hastings, A., Powell, T.: Chaos in three-species food chain. Ecology 72(3), 896–903 (1991)CrossRefGoogle Scholar
  24. 24.
    Hastings, A., Hom, C.L., Ellner, S., Turchin, P., Godfray, H.C.J.: Chaos in ecology: is mother nature a strange attractor? Ann. Rev. Ecol. Syst. 24, 1–33 (1993)CrossRefGoogle Scholar
  25. 25.
    Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Han, L., Ma, Z., Hethcote, H.W.: Four predator prey models with infectious diseases. Math. Comp. Model. 34, 849858 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hethcote, H.W., Han, W.W.L., Zhien, Ma.: A predator–prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004)CrossRefGoogle Scholar
  28. 28.
    Holmes, J.C., Bethel, W.M.: Modification of intermediate host behaviour by parasites. In: Canning, E.U., Wright, C.A. (eds.) Behavioural Aspects of Parasites Transmission, pp. 123–149. Academic Press, London (1972)Google Scholar
  29. 29.
    Kermack, W.O., Mc Kendrick, A.G.: Contributions to the mathematical theory of epidemics, part 1. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)CrossRefGoogle Scholar
  30. 30.
    Lotka, A.J.: Elements of Physical Biology. Williaams and Wilkins Co., Inc., Baltimore (1924)zbMATHGoogle Scholar
  31. 31.
    Lafferty, K.D., Morhis, A.K.: Altered behaviour of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996)CrossRefGoogle Scholar
  32. 32.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)CrossRefGoogle Scholar
  33. 33.
    May, R.M., Anderson, R.M.: Population biology of infectious diseases II. Nature 280, 455 461 (1979)CrossRefGoogle Scholar
  34. 34.
    McCann, K., Yodzis, P.: Biological conditions for chaos in a three-species food chain. Ecology 75(2), 561–564 (1994)CrossRefGoogle Scholar
  35. 35.
    Mena-Lorca, J., Hethcote, H.W.: Dynamic models of infectious diseases as regulators of population size. J. Math. Biol. 30, 693716 (1992)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Olsen, L.F., Truty, G.L., Schaffer, W.M.: Oscillations and chaos in epidemics: a non-linear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Pielou, E.C.: Introduction to Mathematical Ecology. Wiley-Interscience, New York (1969)zbMATHGoogle Scholar
  38. 38.
    Ruxton, G.D.: Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous cycles. Proc. R. Soc. Lond. B 256, 189–193 (1994)CrossRefGoogle Scholar
  39. 39.
    Ruxton, G.D.: Chaos in a three-species food chain with a l ower bound on the bottom population. Ecology 77(1), 317–319 (1996)CrossRefGoogle Scholar
  40. 40.
    Schaffer, W.M., Kot, M.: Do strange attractors govern ecological systems? BioScience 35, 342–350 (1985)CrossRefGoogle Scholar
  41. 41.
    Schaffer, W.M., Kot, M.: Chaos in ecological systems the coals that Newcastle forgot. Trends Ecol. Evol. 1, 58–63 (1986)CrossRefGoogle Scholar
  42. 42.
    Singh, S., Chandra, P., Shukla, J.B.: Modeling and analysis of spread of carrier dependent infectious diseases with environmental effects. J. Biol. Syst. 11, 325335 (2003)CrossRefzbMATHGoogle Scholar
  43. 43.
    Toetz, D.W., Varga, L.P., Loughran, E.D.: Half-saturation constants for uptake of nitrate and ammonia by reservoir plankton. Ecology 54(4), 903–908 (1973)CrossRefGoogle Scholar
  44. 44.
    Upadhyay, R., Bairagi, N., Kundu, K., Chattopadhyay, J.: Chaos in eco-epidemiological problem of Salton Sea and its possible control. Appl. Math. Comput. 196(1), 392–401 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Venturino, E.: The influence of disease on Lotka–Volterra systems. Rky. Mt. J. Math. 24, 381402 (1994)MathSciNetGoogle Scholar
  46. 46.
    Venturino, E.: Epidemics in predator–prey model: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)CrossRefzbMATHGoogle Scholar
  47. 47.
    Xiao, Y., Chen, L.: Modelling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2015

Authors and Affiliations

  1. 1.Mahadevananda MahavidyalayaKolkataIndia

Personalised recommendations