Skip to main content
Log in

Chaos to Order: Role of Additional Food to Predator in a Food Chain Model

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The chaos and its controllability is one of the main objectives of mathematical ecology today. In this paper, we propose a new chaos control technique for a three species predator prey system by supplying additional food to predators. A thorough mathematical analysis in this direction revealed the vital role of quality and quantity of the additional food in the controllability of the predator–prey system. The local stability analysis of boundary and interior equilibrium points of the system are done. We have determined the persistence conditions of the system. Bifurcation analysis of the proposed model is done with respect to quality and quantity of additional food. A Hopf point bifurcation phenomena is introduced to detect periodic behaviour of the system. By varying quality and quantity of additional food one can control the chaotic dynamics of a food chain. We establish that chaotic population dynamics of predator–prey system can be controlled by supplying additional food to predators. This study introduce a new chaos control mechanism in a predator–prey system which has applications in fishery management and biological conservation of prey predator species. This model has a special importance in the systems, such as caves, some small marine islands etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. van Baalen, M., Kivan, V., van Rijn, P.C.J., Sabelis, M.W.: Alternative food, switching predators, and the persistence of predator–prey systems. Am. Nat. 157, 512–524 (2001)

    Article  Google Scholar 

  2. van Rijn, P.C.J., van Houten, Y.M., Abelis, M.W.: How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83, 2664–2679 (2002)

  3. Harwood J.D., Obrycki J.J.: The role of alternative prey in sustaining predator populations. In: Hoddle, M.S. (ed.) Proceedings of the Second International Symposium on the Biological Control of Arthropods, vol. 2, pp. 453–462 (2005)

  4. Sabelis M.W., Rijn P.C.J. van.: When does alternative food promote biological pest control? In: Hoddle, M.S. (ed.) Proceedings of the Second International Symposium on the Biological Control of Arthropods, vol. 2, pp. 428–437 (2005)

  5. Huxel, G.R., McCann, K.: Food web stability: the influence of trophic flows across habitats. Am. Nat. 152, 460–469 (1998)

    Article  Google Scholar 

  6. Huxel, G.R., McCann, K., Polis, G.A.: Effects of partitioning allochthonous and autochthonous resources on food web stability. Ecol. Re. 17, 419–432 (2002)

    Article  Google Scholar 

  7. Srinivasu, P.D.N., Prasad, B.S.R.V., Venkatesulu, M.: Biological control through provision of additional food to predators: a theoretical study. Theor. Popul. Biol. 72, 111–120 (2007)

    Article  MATH  Google Scholar 

  8. Sahoo, B.: Predator–prey model with different growth rates and different functional responses: a comparative study with additional food. Int. J. Appl. Math. Res. 1, 117–129 (2012)

    Article  Google Scholar 

  9. Sahoo, B.: Effects of additional foods to predators on nutrient–consumer–predator food chain model. ISRN Biomath. (2012). doi:10.5402/2012/796783

  10. Sahoo, B.: Disease control through provision of alternative food to predator: a model based study. Int. J. Dyn. Control (2014). doi:10.1007/s40435-014-0099-0

  11. Sahoo, B.: Global stability of predator–prey system with alternative prey. ISRN Biotechnol. (2013). doi:10.5402/2013/898039

  12. Sahoo, B., Poria, S.: Disease control in a food chain model supplying alternative food. Appl. Math. Model. 37, 5653–5663 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Das, P., Mukandavire, Z., Chiyaka, C., Sen, A., Mukherjee, D.: Bifurcation and chaos in S-I-S epidemic model. Differ. Equ. Dyn. Sys. 17, 393–417 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sahoo, B., Poria, S.: The chaos and control of a food chain model supplying additional food to top-predator. Chaos, Solitons Fractals 58, 52–64 (2014)

    Article  MathSciNet  Google Scholar 

  15. Upadhyay, R.K., Kumari, N., Rai, V.: Wave phenomena and edge of chaos in a diffusive predator–prey system under Allee effect. Differ. Equ. Dyn. Syst. 17, 301–317 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pant, R.P.: On bifurcation and chaos in a discrete dynamical system. Differ. Equ. Dyn. Syst. 16, 333–350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F., Paula, A.S.P.: On an energy exchange process and appearance of chaos in a non-ideal portal frame dynamical system. Differ. Equ. Dyn. Syst. 21(4), 373–385 (2013). doi:10.1007/s12591-013-0163-9

    Article  MATH  MathSciNet  Google Scholar 

  18. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72, 896–903 (1991)

    Article  Google Scholar 

  19. Srinivasu, P.D.N., Prasad, B.S.R.V.: Role of quantity of additional food to predators as a control in predator–prey systems with relevance to pest management and biological conservation. Bull. Math. Biol. 73, 2249–2276 (2011). doi:10.1007/s11538-010-9601-9

    Article  MathSciNet  Google Scholar 

  20. Cao, F., Chen, L.: Asymptotic behavior of nonautonomous diffusive Lotka–Volterra model. Syst. Sci. Math. Sci. 11, 107–111 (1998)

    MATH  MathSciNet  Google Scholar 

  21. Gakkhar, S., Singh, A.: Control of chaos due to additional predator in the Hastings–Powell food chain model. J. Math. Anal. Appl. 385, 423–438 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nagumo, M.: Uber die Lage der Integralkurven gew onlicher Differentialgleichungen. Proc. Phys. Math. Soc. Jpn. 24, 551 (1942)

    MATH  MathSciNet  Google Scholar 

  23. Butler, G.J., Freedman, H., Walteman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–429 (1986)

    Article  MATH  Google Scholar 

  24. Freedman, H., Waltman, P.: Persistent in model of three competitive populations. Math. Biosci. 68, 213–231 (1985)

    Article  MathSciNet  Google Scholar 

  25. Kumar, R., Freedman, H.: A mathematical model of facultative mutualism with populations interacting in a food chain. Math. Biosci. 97, 235–261 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  27. Govaerts, W., Kuznetsov, Y.A., Dhooge, A.: Numerical continuation of bifurcations of limit cycles in matlab. SIAM J. Sci. Comput. 27, 231–252 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kuznetsov, Y.A., Levitin, V.V.: Integrated environment for analysis of dynamical systems, CWI, Amsterdam. ftp://ftp.cwi.nl/pub/CONTENT (1997)

  29. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang, X.J.: AUTO97-AUTO2000: continuation and bifurcation software for ordinary differential equations (with HomCont), Users Guide, Concordia University, Montreal, Canada, 1997–2000. http://indy.cs.concordia.ca

  30. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mestrom, W.: Continuation of limit cycles in MATLAB. Master thesis, Mathematical Institute, Utrecht University, The Netherlands (2002)

  32. Riet, A.: A continuation toolbox in MATLAB. Master thesis, Mathematical Institute, Utrecht University, The Netherlands (2000)

  33. Mandal, S., Panja, M.M., Ray, S., Roy, S.K.: Qualitative behavior of three species food chain around inner equilibrium point: spectral analysis. Nonlinear Anal. Model. Control 15, 459–472 (2010)

    MathSciNet  Google Scholar 

  34. Klebanoff, A., Hastings, A.: Chaos in three species food chains. J. Math. Biol. 32, 427–451 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sahoo, B., Poria, S.: Oscillatory coexistence of species in a food chain model with general Holling interactions. Differ. Equ. Dyn. Syst. 22, 221–238 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor and reviewers for their valuable comments and suggestions which have immensely improved the content and presentation of this version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banshidhar Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B., Poria, S. Chaos to Order: Role of Additional Food to Predator in a Food Chain Model. Differ Equ Dyn Syst 23, 129–146 (2015). https://doi.org/10.1007/s12591-014-0228-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-014-0228-4

Keywords

Navigation