Skip to main content
Log in

Cross-Diffusion Modeling in Macroeconomics

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper deals with the stability properties of a closed market, where capital and labour force are acting like a predator–prey system in population-dynamics. The spatial movement of the capital and labour force are taken into account by cross-diffusion effect. First, we are showing two possible ways for modeling this system in only one country’s market (applying a simple functional response and a Holling-type ratio-dependent response as well), examining the conditions of their stability properties. We extend the ratio-dependent model into two countries common market where two kind of cross-diffusion effects are present, and find those additional conditions, whose are necessary for the stability of the global common market besides the stability of each countries local market. Our four-dimensional model highlights that a hectic movement of the capital toward labour force can cause a Turing instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goodvin, R.M.: A growth cycle. In: Feinstein, C.H. (ed.) Socialism, Capitalism and Economic Growth. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  2. Farkas, M., Kotsis, M.: Predator–Prey and Wage-Employment Dynamics, Dynamic Economic Models and Optimal Control, pp. 513–526. North-Holland, Amsterdam (1992)

    Google Scholar 

  3. Aly, S.: Spatial inhomogenity due to Turing instability in a capital–labour market. Appl. Math. 3, 172–176 (2012)

    Article  MathSciNet  Google Scholar 

  4. Farkas, M.: On the distribution of capital and labour in a closed economy. SEA Bull. Math. 19(2), 27–36 (1995)

    MATH  MathSciNet  Google Scholar 

  5. Farkas, M.: Two ways of modelling cross-diffusion. Nonlinear Anal. Theory Methods Appl. 30(2), 1225–1233 (1997)

  6. Jeffries, C., Klee, V., van den Driessche, P.: Qualitative stability of linear systems. Linear. Algebra Appl. 87, 1–48 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Farkas, M.: Dynamical Models in Biology. Academic Press, New York (2001)

    MATH  Google Scholar 

  8. Casten, R.G., Holland, C.J.: Stability properties of solutions to systems of reaction–diffusion equations. SIAM J. Appl. Math. 33, 353–364 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  10. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 641, 37–72 (1952)

    Article  Google Scholar 

  11. Akcakaya, H.R., Arditi, R., Ginzburg, L.R.: Ratio-dependent prediction: an abstraction that works. Ecology 76, 995–1004 (1995)

    Article  Google Scholar 

  12. Aly, S., Kim, I., Sheen, D.: Turing instability for a ratio-dependent predator–prey model with diffusion. Appl. Math. Comput. 217, 7265–7281 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Arditi, R., Berryman, A.A.: The biological paradox. Trends Ecol. Evol. 6, 32 (1991)

    Article  Google Scholar 

  14. Ariditi, R., Grinzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  15. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56(1), 65–75 (1999)

    Article  MATH  Google Scholar 

  16. Kiss, K., Kovács, S.: Qualitative behaviour of \(n\)-dimensional ratio-dependent predator–prey systems. Appl. Math. Comput. 199(2), 535–546 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Duque, C., Kiss, K., Lizana, M.: On the dynamics of an \(n\)-dimensional ratio-dependent predator–prey system with diffusion. Appl. Math. Comput. 208(1), 98–105 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Aly, S., Farkas, M.: Bifurcations in a predator–prey model in a patchy environment with diffusion. Nonlinear Anal.: Real World Appl. 5, 519–526 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Aly, S., Farkas, M.: Competition in patchy environment with cross diffusion. Nonlinear Anal.: Real World Appl. 5, 589–595 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztina Kiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balázsi, L., Kiss, K. Cross-Diffusion Modeling in Macroeconomics. Differ Equ Dyn Syst 23, 147–166 (2015). https://doi.org/10.1007/s12591-014-0224-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-014-0224-8

Keywords

Navigation