Skip to main content
Log in

Effects of Allochthonous Resources in a Three Species Food Chain Model with Harvesting

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We formulate a three species prey–predator model supplying allochthonous inputs to the top predator in the presence of top predator harvesting. All the equilibria of the system are determined and their stability nature are investigated. With the help of Pontryagin’s maximum principle, fishing effort is used as an optimal controller to investigate the optimal solution. The system dynamics for different values of preference parameter (\(c\)), catchability coefficient (\(q\)), allochthonous inputs (\(A\)) and harvesting effort (\(E\)) are presented. Bifurcation analysis is done with respect to harvesting and existence of chaos, 2-cycle, 4-cycle, limit cycle and steady state behaviours are observed. The existence of Hopf bifurcation, limit point, limit point cycle, period doubling and branch point are observed in the system. The dynamics of the system in the A–E parameter plane is presented. We observe that predator extinction risk decreases with the increasing of available allochthonous resources in the presence of harvesting. Our results suggest that allochthonous inputs at high levels can stabilize food webs and remove the possibility of species extinction in the presence of harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Makinde, O.D.: Solving ratio-dependent predator–prey system with constant effort harvesting using Adomian decomposition method. Appl. Math. Comput. 186, 17–22 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ghosh, B., Kar, T.K.: Maximum sustainable yield and species extinction in a prey-predator system: some new results. J. Biol. Phys. 39, 453–467 (2013)

    Article  Google Scholar 

  3. Chakraborty, K., Das, K., Kar, T.K.: Combined harvesting of a stage structured prey-predator model incorporating cannibalism in competitive environment. C. R. Biol. 336, 34–45 (2013)

    Article  Google Scholar 

  4. Gupta, R.P., Banerjee, M., Chandra, P.: Bifurcation analysis and control of LeslieGower PredatorPrey model with Michaelis–Menten type prey-harvesting. Differ. Equ. Dyn. Sys. 20, 339–366 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Liu, X., Li, Y., Ren, Y.: Multiple positive periodic solutions of a discrete time delayed predator–prey system with harvesting terms. Diff. Equ. Dyn. Sys. 18, 239–247 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Polis, G.A., Hurd, S.D.: Extraordinary high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc. Natl. Acad. Sci. USA 92, 4382–4386 (1995)

    Article  Google Scholar 

  7. Polis, G.A., Hurd, S.D.: Allochthonous resources across habitats, subsidized consumers, and apparent trophic cascades: examples from the ocean-land interface. In: Polis, G.A., Winemiller, K.O. (eds.) Food Webs: Integration of Patterns and Dynamics, pp. 275–285. Chapman and Hall, New York (1996)

    Chapter  Google Scholar 

  8. Polis, G.A., Hurd, S.D., Jackson, C.T., Pinero, F.S., El, Nio: Effects on the dynamics and control of an island ecosystem in the gulf of California. Ecology 78, 1884–1897 (1997)

    Google Scholar 

  9. Huxel, G.R., McCann, K.: Food web stability: the influence of trophic flows across habitats. Am. Nat. 152, 460–469 (1998)

    Article  Google Scholar 

  10. Huxel, G.R., McCann, K., Polis, G.A.: Effects of partitioning allochthonous and autochthonous resources on food web stability. Ecol. Res. 17, 419–432 (2002)

    Article  Google Scholar 

  11. Sahoo, B., Poria, S.: Disease control in a food chain model supplying alternative food. Appl. Math. Model. 37, 5653–5663 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Strauss, S.Y.: Indirect effects in community ecology: their definition, study and importance. Trends Ecol. Evol. 6, 206–210 (1991)

    Article  Google Scholar 

  13. Polis, G.A., Strong, D.: Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996)

    Article  Google Scholar 

  14. Srinivasu, P.D.N., Prasad, B.S.R.V., Venkatesulu, M.: Biological control through provision of additional food to predators:a theoretical study. Theor. Popul. Biol. 72, 111–120 (2007)

    Article  MATH  Google Scholar 

  15. Sabelis, M.W., van Rijn, P.C.J.: When does alternative food promote biological pest control? In: Hoddle, M.S. (ed.) Proceedings of the Second International Symposium on Biological Control of Arthropods, pp. 428–437. USDA Forest Service Publication (2005)

  16. Sahoo, B., Poria, S.: The chaos and control of a food chain model supplying additional food to top-predator. Chaos Solitons Fractals 58, 52–64 (2014)

    Article  MathSciNet  Google Scholar 

  17. Sahoo, B.: Effects of additional foods to predators on nutrient-consumer-predator food chain model. ISRN Biomath. (2012). doi:10.5402/2012/796783

  18. McCann, K., Yodzis, P.: Biological conditions for chaos in a three-species food chain. Ecology 75, 561–564 (1994)

    Article  Google Scholar 

  19. McCann, K., Hastings, A.: Re-evaluating the omnivory-stability relationships in food webs. Proc. R. Soc. Lond. B Biol. Sci. 264, 1249–1254 (1997)

    Article  Google Scholar 

  20. Peters, R.H.: The Ecological Implications of Body Size. Cambridge University Press, New York (1983)

    Book  Google Scholar 

  21. Cohen, J., Pimm, S.L., Yodzis, P., Saldana, J.: Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993)

    Article  Google Scholar 

  22. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley Series, New York (1990)

    MATH  Google Scholar 

  23. Rosenberg, A.A., Fogarty, M.J., Sissenwine, M.P., Beddington, J.R., Shepherd, J.G.: Achieving sustainable use of renewable resources. Science 262, 828–829 (1993)

    Article  Google Scholar 

  24. Sahoo, B., Poria, S.: Effects of supplying alternative food in a predator-prey model with harvesting. Appl. Math. Comput. (2014). doi:10.1016/j.amc.2014.02.039

  25. Bhattacharyya, J., Pal, S.: Stage-structured cannibalism with delay in maturation and harvesting of an adult predator. J. Biol. Phys. 39, 37–65 (2013)

    Article  Google Scholar 

  26. Kar, T.K., Chattopadhyay, S.K.: A focus on long-run sustainability of a harvested prey predator system in the presence of alternative prey. C. R. Biol. 333, 841–849 (2010)

    Article  Google Scholar 

  27. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mestrom, W.: Continuation of limit cycles in MATLAB. Master thesis. Mathematical Institute, Utrecht University, The Netherlands (2002)

  29. Riet, A.: A continuation toolbox in MATLAB. Master thesis, Mathematical Institute, Utrecht University, The Netherlands (2000).

  30. Chakraborty, K., Jana, S., Kar, T.K.: Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting. Appl. Math. Comput. 218, 9271–9290 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kar, T.K., Ghorai, A., Jana, S.: Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide. J. Theor. Bio. 310, 187–198 (2012)

    Article  MathSciNet  Google Scholar 

  32. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  33. Sahoo, B., Poria, S.: Oscillatory Coexistence of Species in a Food Chain Model With General Holling Interactions. Differ. Equ. Dyn. Syst. (2013). doi:10.1007/s12591-013-0171-9

  34. Ghosh, D., Roy Chowdhury, A.: Bifurcation continuation, chaos and chaos control in nonlinear Bloch system. Commun. Nonlinear Sci. Numer. Simul. 13, 1461–1471 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the reviewer for the valuable comments and suggestions which have immensely improved the content and presentation of this version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banshidhar Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B., Poria, S. Effects of Allochthonous Resources in a Three Species Food Chain Model with Harvesting. Differ Equ Dyn Syst 23, 257–279 (2015). https://doi.org/10.1007/s12591-014-0209-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-014-0209-7

Keywords

Navigation