Advertisement

Differential Equations and Dynamical Systems

, Volume 21, Issue 1–2, pp 165–171 | Cite as

Simple Model of Bouncing Ball Dynamics

Displacement of the Limiter Assumed as a Cubic Function of Time
  • Andrzej Okniński
  • Bogusław Radziszewski
Original Research

Abstract

Nonlinear dynamics of a bouncing ball moving vertically in a gravitational field and colliding with a moving limiter is considered and the Poincaré map, describing evolution from an impact to the next impact, is described. Displacement of the limiter is assumed as periodic, cubic function of time. Due to simplicity of this function analytical computations are possible. Several dynamical modes, such as fixed points, two cycles and chaotic bands are studied analytically and numerically. It is shown that chaotic bands are created from fixed points after first period doubling in a corner-type bifurcation. Equation for the time of the next impact is solved exactly for the case of two subsequent impacts occurring in the same period of limiter’s motion making analysis of chattering possible.

Keywords

Bouncing ball Simple models Exact solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    di Bernardo M., Budd C.J., Champneys A.R., Kowalczyk P.: Piecewise-Smooth Dynamical Systems. Theory and Applications. Series: Applied Mathematical Sciences. Springer, Berlin (2008)Google Scholar
  2. 2.
    Luo A.C.J.: Singularity and Dynamics on Discontinuous Vector Fields. Monograph Series on Nonlinear Science and Complexity. Elsevier, Amsterdam (2006)Google Scholar
  3. 3.
    Awrejcewicz J., Lamarque C.-H.: Bifurcation and Chaos in Nonsmooth Mechanical Systems. World Scientific Series on Nonlinear Science: Series A. World Scientific Publishing, Singapore City (2003)Google Scholar
  4. 4.
    Filippov A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988)zbMATHGoogle Scholar
  5. 5.
    Stronge W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Mehta, A. (ed.): Granular Matter: An Interdisciplinary Approach. Springer, Berlin (1994)Google Scholar
  7. 7.
    Knudsen C., Feldberg R., True H.: Bifurcations and chaos in a model of a rolling wheel-set. Philos. Trans. R. Soc. Lond. A 338, 455–469 (1992)zbMATHCrossRefGoogle Scholar
  8. 8.
    Wiercigroch M., Krivtsov A.M., Wojewoda J.: Vibrational energy transfer via modulated impacts for percussive drilling. J. Theor. Appl. Mech. 46, 715–726 (2008)Google Scholar
  9. 9.
    Awrejcewicz J., Kudra G., Wasilewski G.: Experimental and numerical investigation of chaotic regions in the triple physical pendulum. Nonlinear Dynam. 50, 755–766 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Luo, A.C.J., Guo, Y.: Motion switching and chaos of a particle in a generalized Fermi-acceleration oscillator. Math. Probl. Eng. 2009, Article ID 298906 (2009). doi: 10.1155/2009/298906
  11. 11.
    Nordmark A.B.: Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillator. Nonlinearity 14, 1517–1542 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lenci S., Rega G.: Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation. Chaos Solitions Fractals 11, 2453–2472 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Okniński A., Radziszewski B.: Dynamics of impacts with a table moving with piecewise constant velocity. Nonlinear Dynam. 58, 515–523 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Okniński, A., Radziszewski, B.: Chaotic dynamics in a simple bouncing ball model. Acta Mech. Sin. 27, 130–134 (2011). arXiv:1002.2448 [nlin.CD] (2010)Google Scholar
  15. 15.
    Okniński A., Radziszewski B.: Simple model of bouncing ball dynamics: displacement of the table assumed as quadratic function of time. Nonlinear Dynam. 67, 1115–1122 (2012)CrossRefGoogle Scholar
  16. 16.
    Okniński, A., Radziszewski, B.: Simple models of bouncing ball dynamics and their comparison. arXiv:1002.2448 [nlin.CD] (2010)Google Scholar
  17. 17.
    Okniński, A., Radziszewski, B.: Grazing dynamics and dependence on initial conditions in certain systems with impacts. arXiv:0706.0257 [nlin.CD] (2007)Google Scholar
  18. 18.
    Luo A.C.J., Han R.P.S.: The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dynam. 10, 1–18 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Luo A.C.J.: Discontinuous Dynamical System on Time-Varying Domains. Series: Nonlinear Physical Science. Higher Education Press, Beijing (2009)CrossRefGoogle Scholar
  20. 20.
    Giusepponi S., Marchesoni F.: The chattering dynamics of an ideal bouncing ball. Europhys. Lett. 64, 36–42 (2003)CrossRefGoogle Scholar
  21. 21.
    Giusepponi S., Marchesoni F., Borromeo M.: Randomness in the bouncing ball dynamics. Physica A 351, 142–158 (2005)CrossRefGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2012

Authors and Affiliations

  1. 1.Department of Management and Computer ModellingKielce University of TechnologyKielcePoland
  2. 2.Collegium Mazovia Innovative UniversitySiedlcePoland

Personalised recommendations