Skip to main content
Log in

Asymptotic Analysis of Resonances in Nonlinear Vibrations of the 3-dof Pendulum

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The dynamical response of a harmonically excited three degrees-of-freedom planar physical pendulum is studied in the paper. The investigated system may be considered as a good example for several engineering applications. The asymptotic method of multiple scales (MS) has been adopted in order to carry out the analytical computations. The solutions up to the third order have been achieved. MS method allows to identify parameters of the system being dangerous due to the resonances and yields time histories for the assumed generalised co-ordinates. Three simultaneously occurring resonance conditions have been analysed. The energy transfer from one to another mode of vibrations is illustrated and discussed. The modulation equations in an autonomous form allow obtaining the frequency response functions and drawing resonance curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awrejcewicz J., Kudra G., Wasilewski G.: Chaotic zones in triple pendulum dynamics observed experimentally and numerically. Mech. Mater. 9, 1–17 (2008)

    Article  Google Scholar 

  2. Awrejcewicz J., Kudra G., Wasilewski G.: Experimental and numerical investigation of chaotic regions in the triple physical pendulum. Nonlinear Dyn. 50, 755–776 (2007)

    Article  MATH  Google Scholar 

  3. Awrejcewicz J., Supeł B., Lamarque C-H., Kudra G., Wasilewski G., Olejnik P.: Numerical and experimental study of regular and chaotic motion of triple physical pendulum. Int. J. Bifurc. Chaos 18(10), 2883–2915 (2008)

    Article  MATH  Google Scholar 

  4. Miles J.: Resonance and symmetry braking for the pendulum. Phys. D Nonlinear Phenom. 31(2), 252–268 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rowan S., Twyford S.M., Hutchins R., Kovalik J., Logan J.E., McLaren A.C., Robertson N.A.: Q-Factor measurements on prototype fused quartz pendulum suspensions for use in gravitational wave detectors. Phys. Lett. 233(4-6), 303–308 (1997)

    Article  Google Scholar 

  6. Chacon R.: Chaos and geometrical resonance in the damped pendulum subjected to periodic pulses. J. Math. Phys. 38, 1477–1484 (1977)

    Article  MathSciNet  Google Scholar 

  7. Broer M.W., Hoveijn I., Noort van M., Vegter G.: The inverted pendulum: a singularity theory approach. J. Differ. Equ. 157, 120–149 (1999)

    Article  MATH  Google Scholar 

  8. Hemmer P.R., Prentiss M.G.: Coupled-pendulum model of the stimulated resonance Raman effect. J. Opt. Soc. Am. B 5(8), 1613–1623 (1988)

    Article  Google Scholar 

  9. D’Humieres D., Beasley M.R., Huberman B.A., Libchaber A.: Chaotic states and routes to chaos in the forced pendulum. Phys Rev. 26(6), 3483–3496 (1982)

    Google Scholar 

  10. Skeldon A.C.: Dynamics of a parametrically excited double pendulum. Phys. D: Nonlinear Phenom. 75(4), 541–558 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leonov G.A., Smirnova V.B.: Stability and oscillations of solutions of integro-differential equations of pendulum-like systems. Math. Nachr. 177, 157–181 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cevalei O., Ertas A.: Pendulum as vibration absorber for flexible structures: experiments and theory. J. Vibr. Acoust. 118(4), 558–567 (1996)

    Article  Google Scholar 

  13. Yu P., Bi Q.: Analysis on nonlinear dynamics and bifurcations of a double pendulum. J. Sound Vibr. 217(4), 691–736 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang W., Zhang Z., Shen R.: Modeling of system dynamics of a slewing flexible beam with moving payload pendulum. Mech. Res. Commun. 34(3), 260–266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cicek I., Ertas A.: Experimental investigation of beam-tip mass and pendulum system under random excitation. Mech. Syst. Sig. Process. 16(6), 1059–1079 (2002)

    Article  Google Scholar 

  16. Anderson C.W.: Learning to control and inverted pendulum using neutral networks. Control Syst. Mag. IRRR 9(3), 31–37 (1989)

    Article  Google Scholar 

  17. Furuta K., Yamakita M., Kobayashi S.: Swing-up control of inverted pendulum using pseudo-state feedback. J. Syst. Control Eng. 206, 263–269 (1992)

    Google Scholar 

  18. Chung C.C., Hauser J.: Nonlinear control of swing pendulum. Automatica 31(6), 851–862 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wei W.F., Dayawausa W.P., Levine W.S.: Nonlinear controller for an inverted pendulum having restricted travel. Automatica 31(6), 841–850 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han Y.S., Yuta S.: Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot. Robot Autonom. Syst 17, 65–80 (1996)

    Article  Google Scholar 

  21. Lin Z., Saberi A., Gutmann M., Shamash Y.A.: Linear controller for an inverted pendulum having restricted travel: A high-and-low gain approach. Automatica 32(6), 933–937 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pathak K., Franch J., Agrawal S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robot. 21(3), 505–513 (2005)

    Article  Google Scholar 

  23. Muskinja N., Tovornik B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Indus. Electron. 53(2), 631–639 (2006)

    Article  Google Scholar 

  24. Yabuno H., Endo Y., Aoshima N.: Stabilization of 1/3-order subharmonic resonance using an autoparametric vibration absorber. J. Vibr. Acoust. 121(3), 309–316 (1999)

    Article  Google Scholar 

  25. Alasty A., Salarien H.: Nonlinear feedback control of chaotic pendulum in presence of saturation effect. Chaos Solit. Fract. 31(2), 292–304 (2007)

    Article  MATH  Google Scholar 

  26. Mori S., Nisihara H., Furuta K.: Control of unstable mechanical systems: control of pendulum. Int. J. Control 23, 673–692 (1976)

    Article  Google Scholar 

  27. Chung C.C., Hauser J.: Nonlinear control of a swinging pendulum. Automatica 31, 851–862 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shirieav A.S., Progromsky A., Ludvigsen H., Egeland O.: On global properties of passivity-based control of an invert pendulum. Int. J. Robust Nonlinear Control 10, 283–300 (2000)

    Article  Google Scholar 

  29. Shirieav A.S., Egeland O., Ludvigsen H., Fradkov A.: VSS-version of energy-based control of swinging up of pendulum. Syst. Control Lett. 44, 45–56 (2001)

    Article  Google Scholar 

  30. Shiriaev A.S., Ludvigsen H., Egeland O.: Swinging up the spherical pendulum via stabilization of its first integrals. Automatica 40(1), 73–85 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Furuta K., Ochiai T., Ono N.: Attitude control of a triple inverted pendulum. Int. J. Control 39, 1351–1365 (1984)

    Article  MATH  Google Scholar 

  32. Spong M.W.: The swingup control problem for the acrobot. IEEE Control Syst. Mag. 15, 72–79 (1995)

    Article  Google Scholar 

  33. Fantoni I., Lozano R., Spong M.W.: Energy based control of the pendubot. IEEE Trans. Autom. Control AC 45, 725–729 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hoshino T., Kawai H., Furuta K.: Stabilization of the triple spherical inverted pendulum-a simultaneous design approach. Autommatisierungstechnik 48, 577–587 (2000)

    Article  Google Scholar 

  35. Spong M.W., Corke P., Lozano R.: Nonlinear control of the inertia wheel pendulum. Automatica 37, 1845–1851 (2001)

    Article  MATH  Google Scholar 

  36. Zhao J., Spong M.W.: Hybrid control for global stabilization of the cart-pendulum system. Automatica 37, 1845–1851 (2001)

    Article  MathSciNet  Google Scholar 

  37. Nayfeh A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  38. Shivamoggi B.K.: Perturbation Method for Differential Equations. Birkhauser, Boston (2002)

    Google Scholar 

  39. Sado D., Gajos K.: Analysis of vibrations of three-degree-of-freedom dynamical system with double pendulum. J. Theor. Appl. Mech. 46(1), 141–156 (2008)

    Google Scholar 

  40. Starosta, R., Sypniewska-Kamińska, G., Awrejcewicz, J.: Resonances in kinematically driven nonlinear spring pendulum. In: DSTA 11th Conference, pp 103–108 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Starosta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awrejcewicz, J., Starosta, R. & Sypniewska-Kamińska, G. Asymptotic Analysis of Resonances in Nonlinear Vibrations of the 3-dof Pendulum. Differ Equ Dyn Syst 21, 123–140 (2013). https://doi.org/10.1007/s12591-012-0129-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-012-0129-3

Keywords

Navigation