Advertisement

Differential Equations and Dynamical Systems

, Volume 20, Issue 1, pp 77–91 | Cite as

Solitary Wave Solutions and Periodic Wave Solutions of the B(m,n) Equation with Generalized Evolution Term

  • Wei LiEmail author
  • Yun-Mei Zhao
  • Yu-Min Ding
Original Research

Abstract

The exp-function method combined F-expansion method are employed to investigate the B(m,n) equation with generalized evolution term. The solitary wave solutions and periodic wave solutions to the equation are constructed analytically under certain circumstances. Moreover, the phase portraits of some solutions are shown.

Keywords

Exp-function method F-expansion method B(m,n) equation with generalized evolution term Solitary wave solution Periodic wave solution 

Mathematics Subject Classification (2000)

35Q51 35Q58 36K65 34A20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    He J.-H., Abdou M.A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals 34, 1421–1429 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Zhang S.: Application of Exp-function method to a KdV equation with variable. Phys. Lett. A 365, 448–453 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Zhang S.: Exp-function method for solving Maccaris system. Phys. Lett. A 371(1–2), 65–71 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ebaid A.: Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method. Phys. Lett. A 365, 213–219 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    He J.-H.: Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method. Comput. Math. Appl. 54(7–8), 966–986 (2007)MathSciNetzbMATHGoogle Scholar
  6. 6.
    He J.-H., Wu X.-H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Yusufoglu E.: New solitonary solutions for modified forms of DP and CH equations using Exp-function method. Appl. Math. Comput. 186, 130–141 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wang M.L., Li X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Zhang J.-L., Wang M.L.: The improved F-expansion method and its applications. Phys. Lett. A 350, 103–109 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Yomba E.: The extended F-expansion method and its application for solving the nonlinear wave, CKGZ,GDS,DS and GZ equations. Phys. Lett. A 340, 149–160 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Abdou M.A.: The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos Solitons Fractals 31, 95–104 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Zhang S.: New exact solutions of the KdV-Burgers-Kuramoto equation. Phys. Lett. A 358, 414–420 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Wang M., Li X.: Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys. Lett. A 343, 48–54 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Zhang S.: Application of Exp-function method to Riccati equation and new exact solutions with three arbitrary functions of Broer-Kaup-Kupershmidt equations. Phys. Lett. A 372, 1873–1880 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ding Y.: Exp-function method combined with F-expansion method for obtaining new exact solutions of 2+1-dimensional Boussinesq equation. Math. Sci. Res. J. 13, 129–139 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Biswas A.: 1-Soliton solution of the B(m,n) equation with generalized evolution. Commun. Nonlinear Sci. Numer. Simul. 14, 3226–3229 (2009)zbMATHCrossRefGoogle Scholar
  17. 17.
    Shang Y.: New exact special solutions with solitary patterns for Boussiensq-like B(m,n) equations with fully nonlinear dispersion. Appl. Math. Comput. 173, 1137–1148 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Zhanga L., Chen L., Huod X.: New exact compacton, peakon and solitary solutions of the generalized Boussinesq-like B(m,n) equations with nonlinear dispersion. Nonlinear Anal. 67, 3276–3282 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shang Y.: New exact special solutions with solitary patterns for Boussinesq-like B(m,n) equations with fully nonlinear dispersion. Appl. Math. Comput. 173, 1137–1148 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2012

Authors and Affiliations

  1. 1.Department of MathematicsHonghe UniversityMengziPeople’s Republic of China

Personalised recommendations