Skip to main content
Log in

Spectral Dynamics and Regularization of Incompletely and Irregularly Measured Data

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Constrained by practical and economical aspects, in many applications, one often deals with data sampled irregularly and incompletely. The use of irregularly sampled data may result in some artifacts and poor spatial resolution. Therefore, the preprocessing of the measurements onto a regular grid plays an important step. One of the methods achieving this objective is based on the Fourier reconstruction, which involves an underdetermined system of equations. The recent Uniform Uncertainty Principle (UUP) uses convex optimization through l 1 minimization for solving underdetermined systems. The l 1 minimization admits certain theoretical guarantees and simpler implementation. The present work applies UUP to the Fourier-based data regularization problem. For the signals having sparse Fourier spectra, our method replaces the incomplete and irregular coordinate grid with the grid that is a subset of equispaced complete grid. It then generates error resulting from the stated replacement. Finally, it applies UUP to realize its objective. To justify the applicability of our method, we present the empirical performance of it on different sets of measurement coordinates as a function of number of nonzero Fourier coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharon M., Elad M.: Sparse and redundant modeling of image content using an image content dictionary. SIAM J. Imaging Sci. 1(3), 228–247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bass R.F., Grochenig K.: Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36(3), 773–795 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borwein, P., Erdelyi, T.: Polynomals and Polynomial Inequalities. Graduate Texts in Mathematics, vol. 161. Springer (1995)

  4. Bruckstein A.M., Donoho D.L., Elad M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candes E.: The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris 346(9–10), 589–592 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Candes, E.J., Romberg, J.: Practical signal recovery from random projections. In: Wavelet Applications in Signal and Image Processing XI, Proc. of SPIE Conf., vol. 5914 (2004)

  7. Candes E.J., Tao T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory 52, 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  8. Candes E.J., Romberg J., Tao T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  9. Candes E.J., Romberg J., Tao T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen S.S., Donoho D.L., Saunders M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daubechies I., Defrise M., De Mol C.: An iterative thresholding algorithm for linear inverse problem with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1541 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho D.L., Elad M.: On the stability of the basis pursuit in the presence of noise. Signal Process. 86(3), 511–532 (2006)

    Article  MATH  Google Scholar 

  13. Donoho D.L., Elad M., Temlyakov V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  14. Elad M., Starck J., Querre P., Donoho D.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Comput. Harmon. Anal. 19, 340–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fuchs J.J.: On sparse representation in arbitrary redundant bases. IEEE Trans. Inform. Theory 50(6), 1341–1344 (2004)

    Article  MathSciNet  Google Scholar 

  16. Hennenfent G., Herrmann F.J.: Seismic denoising with non-uniformly sampled curvelets. Comput. Sci. Eng 8(3), 50–59 (2006)

    Article  Google Scholar 

  17. Polo, Y.L., Wang, Y., Pandharipande, A., Leus, G.: Compressive wide-band spectrum sensing. In: IEEE-ICASSP, pp. 2337–2340 (2009)

  18. Rauhut H.: Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal. 22(1), 16–42 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rubinstein R., Zibulovsky M., Elad M.: Double sparsity: Learning sparse dictionary for sparse signal approximations. IEEE. Trans. Signal. Process 58(3), 1553–1554 (2010)

    Article  Google Scholar 

  20. Tropp J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 51(3), 1030–1051 (2006)

    Article  MathSciNet  Google Scholar 

  21. Zwartjes P.M., Sacchi M.D.: Fourier reconstruction of nonuniformly sampled, aliased seismic data. Geophysics 72(1), V21–V32 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Sastry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastry, C.S. Spectral Dynamics and Regularization of Incompletely and Irregularly Measured Data. Differ Equ Dyn Syst 19, 181–197 (2011). https://doi.org/10.1007/s12591-011-0081-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-011-0081-7

Keywords

Mathematics Subject Classification (2000)

Navigation