Skip to main content
Log in

Existence and Exponential Stability of Anti-periodic Solutions of High-order Hopfield Neural Networks with Delays on Time Scales

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

On time scales, a class of delayed high-order Hopfield neural networks are considered. We establish some sufficient conditions on the existence and exponential stability of anti-periodic solutions for the following Hopfield neural networks with time-varying and distributed delays

$$\begin{array}{l} x_i^{\Delta}(t)\,=\,-c_i(t)x_i(t)+\sum\limits^n_{j=1}a_{ij}(t)f_j\left(x_j(t-\gamma_{ij}(t))\right)\\ \,\quad\,\quad\,\quad\,\,+\,\sum\limits^n_{j=1} \sum\limits_{l=1}^{n}b_{ijl}(t)\int\limits_0^{\infty}k_{ij}(\theta)g_j(x_j(t-\theta))\Delta \theta \int\limits_0^{\infty}k_{il}(\theta)g_l(x_l(t-\theta))\Delta \theta\\ \,\quad\,\quad\,\quad\,\,+\,\quad I_i(t),\quad i=1,2,\ldots,n\end{array}$$

on time scales. Finally, an example is given to show the effectiveness of the proposed method and results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y., Zhong S.M., Li Z.L.: Periodic solutions and stability of hopfield neural networks with variable delays. Int. J. Syst. Sci. 27, 895–901 (1996)

    Article  MATH  Google Scholar 

  2. Driessche P.D., Zou X.: Global attractivity in delayed hopfield neural networks model. SIAM J. Appl. Math. 58, 1878–1890 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liao X.X., Xiao D.M.: Global exponential stability of hopfield neural networks with time-varying delays. Acta Electronica Sin. 28, 87–90 (2000) (in Chinese)

    Google Scholar 

  4. Liao X.F., Wong K.-W., Wu Z.F. et al.: Novel robust stability criteria for interval-delayed hopfield neural networks. IEEE Trans. Circuits Syst. I 48, 1355–1359 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Peng J.G., Qiao H., Xu Z.-B.: A new approach to stability of neural networks with time-varying delays. Neural Netw. 15, 95–103 (2002)

    Article  Google Scholar 

  6. Zeng Z.G., Wang J., Liao X.X.: Global exponential stability of neural networks with time-varying delay. IEEE Trans. Circuits Syst. I 50, 1353–1358 (2003)

    Article  MathSciNet  Google Scholar 

  7. Xu B.J., Liu X.Z., Liao X.X.: Global asymptotic stability of high order Hopfield type neural networks with time delays. Comput. Math. Appl. 45, 1729–1737 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang Z., Fang J., Liu X.: Global stability of stochastic high-oreder neural networks with discrete and distributed delay. Chaos Solitons Fractals 36, 388–396 (2008)

    Article  MathSciNet  Google Scholar 

  9. Mohamad S.: Exponential stability in Hopfield-type neural networks with impulses. Chaos Solitons Fractals 32, 456–467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu Y., You Z.: Multi-stability and almost periodic solutions of a class of recurrent neural networks. Chaos Solitons Fractals 33, 554–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu B.J., Liu X.Z.: Global asymptotic stability of high-order Hopfield type neural networks with time delays. Comput. Math. Appl. 45, 1279–1737 (2003)

    MATH  Google Scholar 

  12. Kosmatopoulos E.B., Christodoulou M.A.: Structural properties of gradient recurrent high-order neural networks. IEEE Trans. Circuits Syst. II 42, 592–603 (1995)

    Article  MATH  Google Scholar 

  13. Liu B., Huang L.: Existence and exponential stability of periodic solutions for a class of Cohen-Grossberg neural networks with time-varying delays. Chaos Solitons Fractals 32, 617–627 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang F., Li Y.: Almost periodic solutions for higher-order Hopfield neural networks without bounded activation functions. Electron. J. Differ. Equ. 97, 1–10 (2007)

    Article  Google Scholar 

  15. Li, Y., Zhao, L., Liu, P.: Existence and exponential stability of periodic solution of high-order Hopfield neural network with delays on time scales. Discret. Dyn. Nat. Soc. 2009, 18 (2009)

  16. Cheng Y.Q.: Anti-periodic solutions for semilinear evolution equations. J. Math. Anal. Appl. 315, 337–348 (2006)

    Article  MathSciNet  Google Scholar 

  17. Wu R.: An anti-periodic LaSalle oscillation theorem. Appl. Math. Lett. 21, 928–933 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shao J.Y.: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays. Phys. Lett. A 372, 5011–5016 (2008)

    Article  Google Scholar 

  19. Ou C.: Anti-periodic solutions for high-order Hopfield neural networks. Comput. Math. Appl. 56, 1838–1844 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bohner M., Peterson A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston (2001)

    MATH  Google Scholar 

  21. Bohner M., Peterson A.: Advances in Dynamic Equations on Time Scales. Birkhauser, Boston (2003)

    Book  MATH  Google Scholar 

  22. Lakshmikantham V., Vatsala A.S.: Hybrid systems on time scales. J. Comput. Appl. Math. 141, 227–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaufmann E.R., Raffoul Y.N.: Periodic solutions for a neutral nonlinear dynamic equation on a time scale. J. Math. Anal. Appl. 319, 315–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Li, Y. Existence and Exponential Stability of Anti-periodic Solutions of High-order Hopfield Neural Networks with Delays on Time Scales. Differ Equ Dyn Syst 19, 13–26 (2011). https://doi.org/10.1007/s12591-010-0065-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-010-0065-z

Keywords

Navigation