Finite-time attractivity and bifurcation for nonautonomous differential equations

  • Martin RasmussenEmail author
Original Research


The aim of this article is to introduce nonautonomous and finite-time versions of central concepts from the theory of dynamical systems such as attractivity and bifurcation. The discussion includes an appropriate spectral theory for linear systems as well as finite-time analogues of the well-known transcritical and pitchfork bifurcation.


Attractor dichotomy dichotomy spectrum finite-time dynamics nonautonomous differential equation nonautonomous bifurcation pitchfork bifurcation repeller transcritical bifurcation 

Mathematics Subject Classification (2000)

34A30 34D09 34D45 37B55 37G34 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham R. H., Marsden J. E. and Ratiu T., Manifolds, Tensor Analysis, and Applications, Springer, New York, (1988)zbMATHGoogle Scholar
  2. 2.
    Aulbach B., Gewöhnliche Differenzialgleichungen, Spektrum Akademischer Verlag, Heidelberg, (in German), (2004)Google Scholar
  3. 3.
    Aulbach B. and Siegmund S., A spectral theory for nonautonomous difference equations, Proceedings of the Fifth Conference on Difference Equations and Applications, Temuco/Chile 2000, Gordon & Breach Publishers, (2000)Google Scholar
  4. 4.
    —, The dichotomy spectrum for noninvertible systems of linear difference equations, Journal of Difference Equations and Applications 7(6), 895–913, (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berger A., Doan T. S. and Siegmund S., Nonautonomous finite-time dynamics, Discrete and Continuous Dynamical Systems B, 9(3–4), 463–492, (2008)zbMATHGoogle Scholar
  6. 6.
    —, A definition of spectrum for differential equations on finite time, J. Differential Equations, 246, 1098–1118, (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chicone C., Ordinary Differential Equations with Applications, Texts in Applied Mathematics, vol. 34, Springer, New York, (1999)Google Scholar
  8. 8.
    Coddington E. A. and Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York Toronto London, (1955)zbMATHGoogle Scholar
  9. 9.
    Colonius F., Kloeden P. E. and Siegmund S., (eds.), Foundations of Nonautonomous Dynamical Systems, Special Issue of Stochastics and Dynamics, vol. 4, (2004)Google Scholar
  10. 10.
    Coppel W. A., Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, (1965)zbMATHGoogle Scholar
  11. 11.
    Fabbri R. and Johnson R. A., On a saddle-node bifurcation in a problem of quasiperiodic harmonic forcing, EQUADIFF 2003. Proceedings of the International Conference on Differential Equations, Hasselt, Belgium (Dumortier F., Broer H., Mawhin J., Vanderbauwhede A. and Lunel V., eds.), pp. 839–847, (2005)Google Scholar
  12. 12.
    Glendinning P., Non-smooth pitchfork bifurcations, Discrete and Continuous Dynamical Systems B, 4(2), 457–464, (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Guckenheimer J. and Holmes P., Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Springer, New York, (1983)Google Scholar
  14. 14.
    Haller G., Finding finite-time invariant manifolds in two-dimensional velocity fields, Chaos, 10(1), 99–108, (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Johnson R. A., Kloeden P. E. and Pavani R., Two-step transition in nonautonomous bifurcations: An explanation, Stochastics and Dynamics, 2(1), 67–92, (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Johnson R. A. and Mantellini F., A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles, Discrete and Continuous Dynamical Systems, 9(1), 209–224, (2003)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Kloeden P. E., Pitchfork and transcritical bifurcations in systems with homogeneous nonlinearities and an almost periodic time coefficient, Communications on Pure and Applied Analysis, 3(2), 161–173, (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kloeden P. E. and Siegmund S., Bifurcations and continuous transitions of attractors in autonomous and nonautonomous systems, International J. Bifurcation and Chaos, 15(3), 743–762, (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Langa J. A., Robinson J. C. and Suárez A., Stability, instability and bifurcation phenomena in non-autonomous differential equations, Nonlinearity, 15(3), 887–903, (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    —, Bifurcations in non-autonomous scalar equations, J. Differential Equations, 221(1), 1–35, (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lekien F., Shadden S. C. and Marsden J. E., Lagrangian coherent structures in n-dimensional systems, J. Mathematical Physics 48(6), 065404, 19 pp, (2007)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Lyapunov A. M., The General Problem of the Stability of Motion, Mathematical Society of Kharkov, Kharkov, (in Russian), (1892)Google Scholar
  23. 23.
    —, Sur les figures d’equilibre peu differentes des ellipsodies d’une masse liquide homogène donnee d’un mouvement de rotation, Academy of Science St. Petersburg, St. Petersburg, (in French), (1906)Google Scholar
  24. 24.
    Núñez C. and Obaya R., A non-autonomous bifurcation theory for deterministic scalar differential equations, Discrete and Continuous Dynamical Systems B, 9(3–4), 701–730, (2008)zbMATHGoogle Scholar
  25. 25.
    Poincaré H., Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, (3 volumes, in French), (1892-1899)Google Scholar
  26. 26.
    Pötzsche C., Nonautonomous continuation and bifurcation of bounded solutions I: Difference equations, Manuscript.Google Scholar
  27. 27.
    —, Robustness of hyperbolic solutions under parametric perturbations, to appear in: Journal of Difference Equations and Applications.Google Scholar
  28. 28.
    Rasmussen M., Towards a bifurcation theory for nonautonomous difference equations, Journal of Difference Equations and Applications, 12(3–4), 297–312, (2006)zbMATHMathSciNetGoogle Scholar
  29. 29.
    —, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Springer Lecture Notes in Mathematics, vol. 1907, Springer, Berlin, Heidelberg, New York, (2007)Google Scholar
  30. 30.
    —, Nonautonomous bifurcation patterns for one-dimensional differential equations, J. Differential Equations, 234(1), 267–288, (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sacker R. J. and Sell G. R., Existence of dichotomies and invariant splittings for linear differential systems I, J. Differential Equations 15, 429–458, (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    —, A spectral theory for linear differential systems, J. Differential Equations, 27, 320–358, (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Shadden S. C., Lekien F. and Marsden J. E., Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, Nonlinear Phenomena, 212(3–4), 271–304, (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Siegmund S., Dichotomy spectrum for nonautonomous differential equations, J. Dynamics and Differential Equations, 14(1), 243–258, (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, vol. 2, Springer, New York, (1990)Google Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2010

Authors and Affiliations

  1. 1.Department of MathematicsImperial CollegeLondonUK

Personalised recommendations