Skip to main content
Log in

Finite-time attractivity and bifurcation for nonautonomous differential equations

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The aim of this article is to introduce nonautonomous and finite-time versions of central concepts from the theory of dynamical systems such as attractivity and bifurcation. The discussion includes an appropriate spectral theory for linear systems as well as finite-time analogues of the well-known transcritical and pitchfork bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham R. H., Marsden J. E. and Ratiu T., Manifolds, Tensor Analysis, and Applications, Springer, New York, (1988)

    MATH  Google Scholar 

  2. Aulbach B., Gewöhnliche Differenzialgleichungen, Spektrum Akademischer Verlag, Heidelberg, (in German), (2004)

    Google Scholar 

  3. Aulbach B. and Siegmund S., A spectral theory for nonautonomous difference equations, Proceedings of the Fifth Conference on Difference Equations and Applications, Temuco/Chile 2000, Gordon & Breach Publishers, (2000)

  4. —, The dichotomy spectrum for noninvertible systems of linear difference equations, Journal of Difference Equations and Applications 7(6), 895–913, (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berger A., Doan T. S. and Siegmund S., Nonautonomous finite-time dynamics, Discrete and Continuous Dynamical Systems B, 9(3–4), 463–492, (2008)

    MATH  Google Scholar 

  6. —, A definition of spectrum for differential equations on finite time, J. Differential Equations, 246, 1098–1118, (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chicone C., Ordinary Differential Equations with Applications, Texts in Applied Mathematics, vol. 34, Springer, New York, (1999)

    Google Scholar 

  8. Coddington E. A. and Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York Toronto London, (1955)

    MATH  Google Scholar 

  9. Colonius F., Kloeden P. E. and Siegmund S., (eds.), Foundations of Nonautonomous Dynamical Systems, Special Issue of Stochastics and Dynamics, vol. 4, (2004)

  10. Coppel W. A., Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, (1965)

    MATH  Google Scholar 

  11. Fabbri R. and Johnson R. A., On a saddle-node bifurcation in a problem of quasiperiodic harmonic forcing, EQUADIFF 2003. Proceedings of the International Conference on Differential Equations, Hasselt, Belgium (Dumortier F., Broer H., Mawhin J., Vanderbauwhede A. and Lunel V., eds.), pp. 839–847, (2005)

  12. Glendinning P., Non-smooth pitchfork bifurcations, Discrete and Continuous Dynamical Systems B, 4(2), 457–464, (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guckenheimer J. and Holmes P., Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Springer, New York, (1983)

    Google Scholar 

  14. Haller G., Finding finite-time invariant manifolds in two-dimensional velocity fields, Chaos, 10(1), 99–108, (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Johnson R. A., Kloeden P. E. and Pavani R., Two-step transition in nonautonomous bifurcations: An explanation, Stochastics and Dynamics, 2(1), 67–92, (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Johnson R. A. and Mantellini F., A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles, Discrete and Continuous Dynamical Systems, 9(1), 209–224, (2003)

    MATH  MathSciNet  Google Scholar 

  17. Kloeden P. E., Pitchfork and transcritical bifurcations in systems with homogeneous nonlinearities and an almost periodic time coefficient, Communications on Pure and Applied Analysis, 3(2), 161–173, (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kloeden P. E. and Siegmund S., Bifurcations and continuous transitions of attractors in autonomous and nonautonomous systems, International J. Bifurcation and Chaos, 15(3), 743–762, (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Langa J. A., Robinson J. C. and Suárez A., Stability, instability and bifurcation phenomena in non-autonomous differential equations, Nonlinearity, 15(3), 887–903, (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. —, Bifurcations in non-autonomous scalar equations, J. Differential Equations, 221(1), 1–35, (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lekien F., Shadden S. C. and Marsden J. E., Lagrangian coherent structures in n-dimensional systems, J. Mathematical Physics 48(6), 065404, 19 pp, (2007)

    Article  MathSciNet  Google Scholar 

  22. Lyapunov A. M., The General Problem of the Stability of Motion, Mathematical Society of Kharkov, Kharkov, (in Russian), (1892)

    Google Scholar 

  23. —, Sur les figures d’equilibre peu differentes des ellipsodies d’une masse liquide homogène donnee d’un mouvement de rotation, Academy of Science St. Petersburg, St. Petersburg, (in French), (1906)

    Google Scholar 

  24. Núñez C. and Obaya R., A non-autonomous bifurcation theory for deterministic scalar differential equations, Discrete and Continuous Dynamical Systems B, 9(3–4), 701–730, (2008)

    MATH  Google Scholar 

  25. Poincaré H., Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, (3 volumes, in French), (1892-1899)

    Google Scholar 

  26. Pötzsche C., Nonautonomous continuation and bifurcation of bounded solutions I: Difference equations, Manuscript.

  27. —, Robustness of hyperbolic solutions under parametric perturbations, to appear in: Journal of Difference Equations and Applications.

  28. Rasmussen M., Towards a bifurcation theory for nonautonomous difference equations, Journal of Difference Equations and Applications, 12(3–4), 297–312, (2006)

    MATH  MathSciNet  Google Scholar 

  29. —, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Springer Lecture Notes in Mathematics, vol. 1907, Springer, Berlin, Heidelberg, New York, (2007)

    Google Scholar 

  30. —, Nonautonomous bifurcation patterns for one-dimensional differential equations, J. Differential Equations, 234(1), 267–288, (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sacker R. J. and Sell G. R., Existence of dichotomies and invariant splittings for linear differential systems I, J. Differential Equations 15, 429–458, (1974)

    Article  MATH  MathSciNet  Google Scholar 

  32. —, A spectral theory for linear differential systems, J. Differential Equations, 27, 320–358, (1978)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shadden S. C., Lekien F. and Marsden J. E., Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, Nonlinear Phenomena, 212(3–4), 271–304, (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Siegmund S., Dichotomy spectrum for nonautonomous differential equations, J. Dynamics and Differential Equations, 14(1), 243–258, (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, vol. 2, Springer, New York, (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rasmussen.

Additional information

This work is dedicated to the memory of my supervisor Professor Bernd Aulbach

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, M. Finite-time attractivity and bifurcation for nonautonomous differential equations. Differ Equ Dyn Syst 18, 57–78 (2010). https://doi.org/10.1007/s12591-010-0009-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-010-0009-7

Keywords

Mathematics Subject Classification (2000)

Navigation