Skip to main content
Log in

Mathematical analysis of the complete iterative inversion method — I

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

A gas composed of identical isotropic molecules has a potential energy of interaction between pairs of particles that depends only on their separation distance. The pair potential is encoded in the virial coefficients of the virial equation of state for a gas.

The complete iterative inversion method is a technique employed in an attempt to recover the pair potential from the second virial coefficient. Implicit in the complete iterative inversion method is the requirement that various mathematical expressions are meaningful: improper integrals converge, derivatives exist, etc.We provide a mathematical framework in which all these implicit assumptions are valid. We show that the complete iterative inversion method cannot recover the pair potential even if the target potential and the initial estimate are infinitely differentiable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boushehri A., Viehland L. A. and Mason E. A., Direct determination of interaction potentials from gas viscosity measurements alone, Chem. Phys., 28, 313–318, (1977)

    Article  Google Scholar 

  2. Colton D. et al., Surveys on solution methods for inverse problems, Springer-Verlag, New York, (2000)

    MATH  Google Scholar 

  3. Cox H. E., Crawford F. W., Smith E. B. and Tindell A. R., A complete iterative inversion procedure for second virial coefficient data, I. The Method, Molec. Phys., 40, 705–712, (1980)

    Article  Google Scholar 

  4. Dymond J. H. and Smith E. B., The virial coefficients of pure gases and mixtures, Clarendon Press, Oxford, (1980)

    Google Scholar 

  5. Frisch H. L. and Helfand E., Conditions imposed by gross properties on the intermolecular potential, J. Chem. Phys., 32, 269–270, (1960)

    Article  MathSciNet  Google Scholar 

  6. Hewitt E. and Stromberg K., Real and Abstract Analysis, Springer-Verlag, New York, (1965)

    MATH  Google Scholar 

  7. Hirschfelder J. O., Curtiss C. F. and Bird R. B., Molecular Theory of Gases and Liquids, John Wiley & Sons, New York, (1964)

    Google Scholar 

  8. Lemes N. H. T., Braga J. P. and Belchior J. C., Spherical potential energy function from second virial coefficient using Tikhonov regularization and truncated singular value decomposition, Chem. Phys. Let., 296, 233–238, (1998)

    Article  Google Scholar 

  9. Mason E. A. and Spurling T. H., The Virial Equation of State, Pergamon Press, Oxford, (1969)

    Google Scholar 

  10. Maitland G. C., Mason E. A., Viehland L. A. and Wakeham W. A., A justification of methods for the inversion of gas transport coefficients, Molec. Phys., 36, 797–816, (1978)

    Article  Google Scholar 

  11. Maitland G. C., Rigby M., Smith E. B. and Wakeham W. A., Intermolecular Forces-Their Origin and Determination, Clarendon Press, Oxford, (1981)

    Google Scholar 

  12. Maitland G. C. and Smith E. B., The direct determination of potential energy functions from second virial coefficients, Molec. Phys., 24, 1185–1201, (1972)

    Article  Google Scholar 

  13. Royden H. L., Real Analysis (third edition), Prentice-Hall, Englewood Cliffs, NJ, (1988)

    Google Scholar 

  14. Rudd W. G., Frisch H. L. and Louis Brickman, Inversion of the classical second virial coefficient, Stat. Phys., 5, 133–135, (1972)

    Article  Google Scholar 

  15. Saks S. and Zygmund A., Analytic Functions (third edition), Elsevier, Amsterdam, (1971)

    Google Scholar 

  16. Sengers J. V. [editor], Equations of State for Fluids and Fluid Mixtures, Elsevier, Amsterdam, (2000)

    Google Scholar 

  17. Singh S. R. and Zerner M. C., On the inversion of the classical second virial coefficient, Stat. Phys., 14, 351–357, (1976)

    Article  MathSciNet  Google Scholar 

  18. Smith E. B., Tindell A. R., Wells B. H. and Crawford F. W., A complete iterative inversion procedure for second virial coefficient data, II. Applications, Molec. Phys., 42, 937–942, (1981)

    Article  Google Scholar 

  19. Smith E. B., Tindell A. R., Wells B. H. and Tildesley D. J., On the inversion of second virial coefficient data derived from an undisclosed potential energy function, Molec. Phys., 40, 997–998, (1980)

    Article  Google Scholar 

  20. Viehland L. A., Interaction potentials for systems, Chem. Phys., 78, 279–294, (1983)

    Article  Google Scholar 

  21. Viehland L. A., Harrington M. M. and Mason E. A., Direct determination of ion-neutral molecule interaction potentials from gaseous ion mobility measurements, Chem. Phys., 17, 433–441, (1976)

    Article  Google Scholar 

  22. van der Waals J. D., On the continuity of the gaseous and liquid states, Ph.D. thesis (in Dutch), University of Leiden, 1873. (Republished in an English translation by Dover Publications in 1988 with an introduction and commentary by J. S. Rowlinson.)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grow, D., Insall, M. Mathematical analysis of the complete iterative inversion method — I. Differ Equ Dyn Syst 17, 419–433 (2009). https://doi.org/10.1007/s12591-009-0029-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-009-0029-3

Keywords

Mathematics Subject Classification (2000)

Navigation