Skip to main content
Log in

Korteweg-de Vries-Burgers equation with a higher-order nonlinearity

  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study a Korteweg-de Vries-Burgers equation with a higher-order nonlinearity. An asymptotic analysis of proper traveling wave solutions is presented by means of the qualitative theory of differential equations. An approximate solution with arbitrary velocity is obtained by using the Adomian decomposition method, which agrees well with the phase plane analysis. A class of solitary wave solutions is also derived which covers existing traveling wave solutions in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Ablowitz and H. Segur, “Solitons and the Inverse Scattering Transform”, SIAM, Philadelphia, 1981.

    MATH  Google Scholar 

  2. G. Adomian, “Solving Frontier Problems of Physics: The Decomposition Method”, Kluwer, Boston, 1994.

    MATH  Google Scholar 

  3. G. Adomian, “Nonlinear Stochastic Opemtor Equations”, Academic Press, San Diego, 1986.

    Google Scholar 

  4. P. Barrera and T. Brugarino, Similarity solutions of the generalized Kadomtsev-Petviashvili-Burgers equations, Nuovo Cimento B,92(1986), 142–156.

    Article  MathSciNet  Google Scholar 

  5. D.J. Benney, Long waves on liquid films, J. Math. Phys.,45(1966), 150–155.

    MATH  MathSciNet  Google Scholar 

  6. J.L. Bona and M.E. Schonbek, Traveling wave solutions to Korteweg-de Vries-Burgers equation, Proc. Roy. Soc. Edinburgh, 101 A(1985), 207–226.

    MathSciNet  Google Scholar 

  7. J.L. Bona, P.E. Souganidis and W.A. Strauss, Stability and instability of solitary waves, Proc. Roy. Soc. London A, 411(1987), 395–412.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. Cheng, and Q.S. Lu, Planar motion and stability for a rigid body with a beam in a field of central gravitational force, Sci. China Ser. A 45(2002), 1479–1486.

    Article  MATH  MathSciNet  Google Scholar 

  9. S.N. Chow and J.K. Hale, “Methods of Bifurcation Theory”, Springer-Verlag, New York, 1981.

    Google Scholar 

  10. M.W. Coffey, On series expansions giving closed form of Korteweg-de Vries-like equations, SIAM J. Appl. Math., 50(1990), 1580–1592.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Dey, Domain wall solution of KdV like equation higher order nonlinearity, J. Phys. A (Math. Gen.) 19(1986), L9–L12.

    Article  MathSciNet  Google Scholar 

  12. B. Dey, KdV like Equations with Domain Wall Solutions and Their Hamiltonians, Solitons, Springer Series on Nonlinear Dynamics, Springer, New York, pp. 188–194, 1988.

    Google Scholar 

  13. R.K. Dodd, J.C. Eilbeck, J.D. Gibbon and H.C. Morris, “Solitons and Nonlinear Wave Equations”, Academic Press Inc., London, 1982.

    MATH  Google Scholar 

  14. Z. Feng, Travelling wave solutions and proper solutions to the two-dimensional BurgersKortewegde Vries equation, J. Phys. A: Math. Gen. 36(2003), 8817–8827.

    Article  MATH  Google Scholar 

  15. Z. Feng, Traveling solitary wave solutions to evolution equations with nonlinear terms of any order, Chaos, Solitons and Fractals, 17(2003), 861–868.

    Article  MATH  MathSciNet  Google Scholar 

  16. Z. Feng, Exact solutions in terms of elliptic functions for the Burgers-Korteweg-de Vries equation, Wave Motion, 38(2003), 109–115.

    Article  MATH  MathSciNet  Google Scholar 

  17. Z. Feng and G. Chen, Traveling wave behavior for a nonlinear reaction-diffusion equation, Dyn. Contin. Discrete Impuls. Syst. (Ser. A), 12(2005), 643–664.

    MATH  MathSciNet  Google Scholar 

  18. Z. Feng and Q.G. Meng, Korteweg-de Vries-Burgers equation and its solitary wave solution, Sci. China (Ser. A), 50 (2007) 1–11 (1–11.DOI: 10.1007/s11425-007-0007-6).

    Article  MathSciNet  Google Scholar 

  19. Z. Feng and Y. Huang, Approximate study to Korteweg-de Vries-Burgers equation, Commun. Pure Appl. Anal., 6(2007), 366–378.

    MathSciNet  Google Scholar 

  20. H. Grad and P.N. Hu, Unified shock profile in a plasma, Phys. Fluids, 10(1967), 2596–2602.

    Article  Google Scholar 

  21. K.Y. Guan and G. Gao, The qualitative theory of the mixed Korteweg-de Vries-Burgers equation, Sci. Sinica (Ser. A), 30(1987), 64–73.

    Google Scholar 

  22. V.V. Gudkov, A family of exact travelling wave solutions to nonlinear evolution and wave equations, J. Math. Phys., 38(1997), 4794–4803.

    Article  MATH  MathSciNet  Google Scholar 

  23. W.D. Halford and M. Vlieg-Hulstman, The Korteweg-de Vries-Burgers equation: a reconstruction of exact solutions, Wave Motion, 14(1991), 267–271.

    Article  MATH  MathSciNet  Google Scholar 

  24. W.D. Halford and M. Vlieg-Hulstman, The Korteweg-de Vries-Burgers equation and Painlevé property, J. Phys. A (Math. Gen.) 25(1992), 2375–2379.

    Article  MATH  MathSciNet  Google Scholar 

  25. P.N. Hu, Collisional theory of shock and nonlinear waves in a plasma, Phys. Fluids, 15(1972), 854–864.

    Article  Google Scholar 

  26. E.L. Ince, “Ordinary Differential Equations”, Dover Publications, New York, 1956.

    Google Scholar 

  27. A. Jeffrey and S. Xu, Exact solutions to the Korteweg-de Vries-Burgers equation, Wave Motion, 11(1989), 559–564.

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Jeffrey and M.N.B. Mohamad, Exact solutions to the KdV-Burgers equation, Wave Motion, 14(1991), 369–375.

    Article  MATH  MathSciNet  Google Scholar 

  29. R.S. Johnson, A nonlinear equation incorporating damping and dispersion, J. Fluid Mech., 42(1970), 49–60.

    Article  MATH  MathSciNet  Google Scholar 

  30. R.S. Johnson, Shallow water waves on a viscous fluid-the undular bore, Phys. Fluids, 15(1972), 1693–99.

    Article  MATH  Google Scholar 

  31. R.S. Johnson, “A Modern Introduction to the Mathematical Theory of Water Waves”, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  32. M.D. Kruskal, “The Korteweg-de Vries Equation and Related Evolution Equations”, Amer. Math. Soc. Providence, R.I. 1974.

    Google Scholar 

  33. E.W. Laedke and K.H. Spatschek, Stability theorem for KdV type equations, J. Plasma Phys., 32(1984), 263–272.

    Article  Google Scholar 

  34. B. Li, Y. Chen and Z.H. Qing, Explicit exact solutions for new general two-dimensional KdV-type and two-dimensional KdV-Burgerstype equations with nonlinear term of any order, J. Phys. A (Math. Gen.), 35(2002), 8253–8265.

    Article  MATH  Google Scholar 

  35. Z.B. Li and M.L. Wang, Travelling wave solutions to the two-dimensional KdV-Burgers equation, J. Phys. A( Math. Gen.), 26(1993), 6027–6032.

    Article  MATH  Google Scholar 

  36. S.D. Liu and S.K. Liu, KdV-Burgers equation modelling of turbulence, Sci. Sinica (Ser. A), 35(1992), 576–586.

    MATH  Google Scholar 

  37. Z.R. Liu and J.B. Li, Bifurcations of solitary waves and domain wall waves for KdV-like equation with higher order nonlinearity, Int. J. Bifur. and Chaos, 12(2002), 397–407.

    Article  MATH  Google Scholar 

  38. W.X. Ma, An exact solution to two-dimensional Korteweg-de Vries-Burgers equation, J. Phys. A( Math. Gen.) 26(1993), L17–L20.

    Article  MATH  Google Scholar 

  39. I. McIntosh, Single phase averaging and traveling wave solutions of the modified Burgers-Korteweg-De Vries equation, Phys. Lett., A, 143(1990), 57–61.

    Article  MathSciNet  Google Scholar 

  40. R.M. Miura, The Korteweg-de Vries equation: A survey of results, SIAM. Rev., 8(1976), 412–459.

    Article  MathSciNet  Google Scholar 

  41. E.J. Parkes, Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation, J. Phys. A( Math. Gen.) 27(1994), L497–L502.

    Article  MATH  MathSciNet  Google Scholar 

  42. E.J. Parkes and B.R. Duffy, An automated tanh-fucntion method for finding solitary wave solutions to nonlinear evolution equations, Comput. Phys. Commun., 98(1996), 288–300.

    Article  MATH  Google Scholar 

  43. R.L. Pego, P. Smereka and M.I. Weinstein, Oscillatory instability of traveling waves for a KdV-Burgers equation, Phys. D, 67(1993), 45–65.

    Article  MATH  MathSciNet  Google Scholar 

  44. R.L. Pego and M.I. Weinstein, Eigenvalues, and solitary wave instabilities, Phil. Trans. Roy. Soc. London A, 34(1992), 47–94.

    MathSciNet  Google Scholar 

  45. L. van Wijngaarden, On the motion of gas bubbles in a perfect fluid, Ann. Rev. Fluid Mech., 4(1972), 369–373.

    Article  Google Scholar 

  46. A.M. Wazwaz, “A First Course in Integral Equations”, World Scientific, River Edge, Singapore, 1997.

    MATH  Google Scholar 

  47. M.I. Weinstein, On the solitary traveling wave of the generalized Korteweg-de Vries equation (Nonlinear Systems of Partial Differential Equations in Applied Mathematics, eds. B. Nicolaenko, D. Holm and J. Hyman), Lectures in Applied Mathematics, Vol. 23, Amer. Math. Soc., 1986.

  48. M.I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Commun. PDEs, 12(1987), 1133–1173.

    Article  MATH  Google Scholar 

  49. X. Xin and Y. Zhao, The series solution for Korteweg-de Vries-Burgers equation, Sci. China (Ser. A), 35(1992), 1066–1077.

    MATH  MathSciNet  Google Scholar 

  50. S.L. Xiong, An analytic solution of Burgers-KdV equation, Chinese Sci. Bull., 34(1989), 1158–1162.

    MATH  MathSciNet  Google Scholar 

  51. W.G. Zhang, Q.S. Chang and B.G. Jiang, Explicit exact solitary-wave solutions for compound KdV-type and compound KdVBurgers-type equations with nonlinear term of any order, Chaos, Solitons and Fractals, 13(2002), 311–319.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaosheng Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Z., Gupta, I.S. Korteweg-de Vries-Burgers equation with a higher-order nonlinearity. Differ Equ Dyn Syst 16, 3–27 (2008). https://doi.org/10.1007/s12591-008-0002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-008-0002-6

MSC

Keywords

Navigation