Skip to main content
Log in

Non-isothermal degradation kinetics of novel poly(monoethyleneglycol dimethacrylate-co-anthranilic acid cinnamoyl ester) synthesized via aza-Michael addition polymerization reaction

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

A new type of co-polymer between anthranilic acid cinnamoyl ester and monoethyleneglycol dimethacrylate was synthesized via aza-Michael addition polymerization reaction by bulk polymerization method without adding any catalyst. The polymerization reaction was carried out at 100 °C for 2 h under N2 atmosphere with mild stirring. The co-polymer was synthesized at various monomer ratios. The above-synthesized co-polymer was characterized by Fourier transform infrared (FTIR) spectroscopy, UV–visible reflectance spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy, etc. The FTIR data confirmed the 0.032 order of reaction with respect to [M1/M2]. The amorphous nature of the above-synthesized polymer was confirmed by XRD. The non-isothermal degradation kinetics was followed at five different heating rates with five different models. The goal of the present work is to compare the results from TGA data and select the best approach for the synthesized polymer. The activation energy (Ea) values were also determined by model-free methods. The experimental results were carefully analysed and compared with the literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gu Y, Barrault J, Jerome F (2008) Glycerol as an efficient promoting medium for organic reactions. Adv Synth Catal 350:2007–2012

    Article  CAS  Google Scholar 

  2. Devatha P, Podgorski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN (2014) The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26:724–744

    Article  CAS  Google Scholar 

  3. Tamami B, Fadavi A, Tamami M (2006) Polyacrylamide supported phenolate as a heterogeneous, efficient, recyclable and selective catalyst for aza-and thio-Michael addition in aqueous media. Iran Polym J 15:789–807

    Google Scholar 

  4. Mather BD, Viswanathan K, Millar KM, Long TE (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 31:487–531

    Article  CAS  Google Scholar 

  5. Shen Y, Ma Y, Li Z (2013) Facile synthesis of dendrimers combining aza-Michael addition with thiol-yne click chemistry. J Polym Sci Part A Polym Chem 51:708–715

    Article  CAS  Google Scholar 

  6. Sundararaja G, Prabagaran N (2001) A new polymer anchored chiral catalyst for asymmetric Michael addition reactions. Org Lett 3:389–392

    Article  CAS  Google Scholar 

  7. Espeel P, Goethals F, Driessen F, Nguyen LTH, Prez FED (2013) Additive free preparation of functionalized polyurethane via amine-thiol-ene conjugation. Polym Chem 9:2449–2457

    Article  CAS  Google Scholar 

  8. Han SS, He WD, Li J, Li Y, Sun XL, Zhang BY, Pan TT (2009) Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by Michael addition chemistry as drug delivery carriers: synthesis, properties, and in vitro release. J Polym Sci Part A Polym Chem 47:4074–4082

    Article  CAS  Google Scholar 

  9. Su HL, Hsu JM, Pan JP, Wang TH, Yu FE (2011) Kinetic and structural studies of the polymerization of N, N′-bismaleimide-4,4′-diphenylmethane with barbituric acid. Polym Eng Sci 53:1188–1197

    Article  CAS  Google Scholar 

  10. Chatani S, Podgorski M, Wang C, Bowman CN (2014) Facile and efficient synthesis of dendrimers and one-pot preparation of dendritic linear polymer conjugates via a single chemistry: utilization of kinetically selective thiol-Michael addition reactions. Macromolecules 47:4894–4900

    Article  CAS  Google Scholar 

  11. Yang L, Xu LW, Xia CG (2005) Highly efficient KF/Al2O3 catalyzed versatile hetero-Michael addition of nitrogen, oxygen, and sulfur nucleophiles to α, β-ethylenic compounds. Tetrahedron Lett 46:3279–3282

    Article  CAS  Google Scholar 

  12. Malerich JP, Zhu Y, Rawal VH (2010) Squaramide catalyzed enantioselective Michael addition of diphenyl phosphite to nitroalkenes. Angew Chem Int Ed 122:157–160

    Article  Google Scholar 

  13. Wabnitz TC, Yu JQ, Spencer JB (2004) Evidence that protons can be the active catalysts in Lewis acid mediated hetero-Michael addition reactions. Chem A Eur J 10:484–493

    Article  CAS  Google Scholar 

  14. Fustero S, Jimenez D, Rosello MS, Pozo CD (2007) Microwave assisted Tandem cross metathesis intramolecular aza-Michael reaction: an easy entry to cyclic β-amino carbonyl derivatives. J Am Chem Soc 129:6700–6701

    Article  CAS  PubMed  Google Scholar 

  15. Vakulya B, Varga S, Soos T (2008) Epi-cinchona based thiourea organocatalyst family as an efficient asymmetric Michael addition promoter: enantioselective conjugate addition of nitroalkanes to chalcones and α, β-unsaturated N-acylpyrroles. J Org Chem 73:3475–3480

    Article  CAS  PubMed  Google Scholar 

  16. Pitchaimari G, Vijayakumar CT (2014) Functionalized N-(4-hydroxy phenyl) maleimide monomers: kinetics of thermal polymerization and degradation using model-free approach. J Appl Polym Sci 131:1–11

    Article  CAS  Google Scholar 

  17. Rammo NN, Mahdi HAM, Al-Haitham Ibn (2013) Thermal degradation kinetics of polyamide 6,6 cable ties by thermogravimetric analysis. J Pure Appl Sci 26:199–210

    Google Scholar 

  18. Jabal AA, Tan IM, Man Z, Maitra S (2009) A kinetic analysis of the degradation of grafted anionic polyacrylamide gel under nonisothermal condition. J Eng Sci Tech 4:364–373

    Google Scholar 

  19. Aigbodion VS, Hassan SB, Atuanya CU (2012) Kinetics of isothermal degradation studies by thermogravimetric data: effect of orange peels ash on thermal properties of high density polyethylene (HDPE). J Mater Environ Sci 3:1027–1036

    CAS  Google Scholar 

  20. Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT (2008) Non-isothermal degradation kinetics of filled with rice husk ash polypropene composites. Express Polym Lett 2:133–146

    Article  CAS  Google Scholar 

  21. Murichan N, Cherntongchai P (2014) Kinetic analysis of thermal degradation of polyolefin mixtures. Int J Chem Eng Appl 5:169–175

    CAS  Google Scholar 

  22. Khaghanikavkani E, Farid MM (2011) Thermal pyrolysis of polyethylene: kinetic study. Eng Sci Tech 2:1–10

    CAS  Google Scholar 

  23. Bauri K, Roy SG, Arora S, Dey RK, Goswami A, Madras G, De P (2013) Thermal degradation kinetics of thermoresponsive poly (N-isopropylacrylamide-co-N, N-dimethylacrylamide) copolymers prepared via RAFT polymerization. J Therm Anal Calorim 111:753–761

    Article  CAS  Google Scholar 

  24. Chrissafis K (2009) Kinetics of thermal degradation of polymers. J Therm Anal Calorim 95:273–283

    Article  CAS  Google Scholar 

  25. Goswami A, Srivastava G, Umarji AM, Madras G (2012) Thermal degradation kinetics of poly(trimethylol propane triacrylate)/poly(hexane diol diacrylate) interpenetrating polymer network. Thermochim Acta 547:53–61

    Article  CAS  Google Scholar 

  26. Wu D, Liu Y, He C, Chung V, Goh S (2004) Effects of chemistries of trifunctional amines on mechanism of Michael addition polymerization with diacrylates. Macromolecules 37:6763–6770

    Article  CAS  Google Scholar 

  27. Goswami S, Kiren K (2012) Application of Kissinger analysis to glass transition and study of thermal degradation kinetics of phenolic–acrylic IPNs. Bull Mater Sci 35:657–664

    Article  CAS  Google Scholar 

  28. Zugates GT, Tedford NC, Zumbuehl A, Kang CS, Griffith LG, Langer R, Anderson DG (2007) Gene delivery properties and end modified poly(β-amino esters). Bioconjugate Chem 18:1887–1896

    Article  CAS  Google Scholar 

  29. Vyazovkin SV (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22:178–183

    Article  CAS  Google Scholar 

  30. Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5:285–292

    Article  CAS  Google Scholar 

  31. Parthasarathy V, Dhanalakshmi V, Anbarasan R (2015) Thermal studies on benzamide and benzanilide grafted LDPE. Therm Anal Calorim 119:73–84

    Article  CAS  Google Scholar 

  32. Amala Jeya Ranchani A, Parthasarathy V, Anithadevi A, Meenarathi B, Anbarasan R (2017) Synthesis, characterization and catalytic activity of nanosized Ni complexed aminoclay. Appl Nanosci 7:577–588

    Article  CAS  Google Scholar 

  33. Jancirani A, Kohila V, Meenarathi B, Anbarasan R (2016) Synthesis, characterisation and non-isothermal degradation kinetics of novel poly(mono ethylene glycoldimethacrylate-co-4-aminobenzoate). Bull Mater Sci 39:1725–1733

    Article  CAS  Google Scholar 

  34. Sribala G, Meenarathi B, Anbarasan R (2017) Synthesis, characterization, and catalytic activity of fluorescent polyimide nanocomposites. J Appl Polym Sci 134:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anbarasan.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jancirani, A., Kohila, V., Meenarathi, B. et al. Non-isothermal degradation kinetics of novel poly(monoethyleneglycol dimethacrylate-co-anthranilic acid cinnamoyl ester) synthesized via aza-Michael addition polymerization reaction. Int J Plast Technol 23, 29–38 (2019). https://doi.org/10.1007/s12588-019-09231-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-019-09231-w

Keywords

Navigation