Abstract
Carbon nanotube (CNT) reinforced polyvinyl alcohol (PVA) composite thin films have been prepared by a solution casting process at room temperature using gum acacia as a surfactant. CNT contents in the composites were varied from 5 to 10% by weight to increase its electrical conductivity. Electrical properties, such as conductivity, capacitance, dielectric constant and loss tangent, of the composites were investigated. All the electrical properties were found to be improved with the incorporation of CNTs. The absorbance and transmittance of light were determined by UV–visible spectroscopy and from the transmittance data, band gaps were calculated. The smallest band gap, of 1.18 eV, was found for the 10% CNT containing composite while the 0% CNT containing composite had a band gap of 2.4 eV. Thermal properties of the films were characterized by a thermo mechanical analyzer. The experimental results revealed that the blended films exhibited higher stability and improved thermal properties, which suggests the occurrence of an interaction, detected by FTIR, among PVA, CNT and water molecules in the films. The mechanical properties, tensile strength, elongation at break and Young modulus, were found to be improved. Water absorption properties of the composites were found to decrease with the increase of CNT content. The lowest water uptake properties and highest thermal stability were demonstrated by 10% CNT containing film. All of the results indicated that the developed PVA/CNT composite might be promising for use in optoelectronic application.
This is a preview of subscription content, access via your institution.










References
Wang X, Li Q, Xie J, Jin Z, Wang J, Yan L, Kaili J, Shoushan F (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9:3137–3141
Gullapalli S, Wong MS (2011) Nanotechnology: a guide to nano-objects. Chem Eng Prog 107:28–32
Pop E, Mann D, Wang Q, Goodson K, Dai H (2005) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100
Min-Feng Yu, Lourie Oleg, Dyer Mark J, Moloni Katerina, Kelly Thomas F, Ruoff Rodney S (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640
Yang YH, Li WZ (2011) Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl Phys Lett 98:041901
Zhao Y, Wei J, Vajtai R, Ajayan PM, Barrera EV (2011) Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep 1. doi:10.1038/srep00083
Charlier J-C, Blasé X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79:677–732
Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT et al (2001) Superconductivity in 4 Angstrom single-walled carbon nanotubes. Science 292:2462–2465
Takesue I, Haruyama J, Kobayashi N, Chiashi S, Maruyama S, Sugai T, Shinohara H (2006) Superconductivity in entirely end-bonded multiwalled carbon nanotubes. Phys Rev Lett 96:057001
Lortz R, Zhang Q, Shi W, Ye JT, Qiu CY, Wang Z, He HT, Sheng P, Qian TZ, Tang ZK, Wang N, Zhang XX, Wang J, Chan CT (2009) Superconducting characteristics of 4-A carbon nanotube–zeolite composite. Proc Natl Acad Sci 106:7299–7303
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
Misewich JA, Martel R, Avouris Ph, Tsang JC, Heinze S, Tersoff J (2003) Electrically induced optical emission from a carbon nanotube FET. Science 300:783–786
Chen J, Perebeinos V, Freitag M, Tsang J, Fu Q, Liu J, Avouris Ph (2005) Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310:1171–1174
Freitag M, Martin Y, Misewich JA, Martel R, Avouris Ph (2003) Photoconductivity of single carbon nanotubes. Nano Lett 3:1067–1071
Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl Phys Lett 72:188–190
Zhang X, Liu T, Kumar S, Moore VC, Hauge RH, Smalley RE (2003) Poly(vinyl alcohol)/SWNT composite film. Nano Lett 3:1285–1288
Chen XL, Liu YJ (2004) Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput Mater Sci 29:1–11
Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605
Cooper CA, Cohen SR, Barber AH, Wagner HD (2002) Detachment of nanotubes from a polymer matrix. Appl Phys Lett 81:3873–3875
Wagner HD (2002) Naotube-polymer adhesion: a mechanics approach. Chem Phys Lett 361:57–61
Zaho Q, Nardalli M, Bernholc J (2002) Ultimate strength of carbon nanotubes: a theoretical study. Phys Rev B 65:144105
Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotubes/polyvinyl alcohol composites. Adv Mater 11:937–941
Lourie O, Wagner HD (1998) Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Appl Phys Lett 73:3527–3529
Krishnan S, Justin RC, Dinakaran S, Das JS (2008) Investigation of optical band gap in potassium acid phthalate single crystal. Cryst Res Technol 43:670–673
Chitra M, Palaniswamy S (2010) Growth and characterization of nonlinear optical material: alanine barium chloride. Rasayan J Chem 3:145–150
Balasubramanian D, Jayavel R, Murugakoothan P (2009) Studies on the growth aspects of organic l-alanine maleate: a promising nonlinear optical crystal. Nat Sci 1:216–221
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM D3039/D3039M. (2008) doi:10.1520/D3039_D3039M-08
Test Method for Tensile Properties of Plastics ASTM D638. (2010). doi: 10.1520/D0638-10
Standard Test Method for Water Absorption of Plastics. ASTM D570-98(2010)e1. (2010). doi: 10.1520/D0570-98R10E01
Lambert JB, Shurvell HF, Lightner DA, Cooks RG (1998) Introduction to organic spectroscopy. Prentice Hall, Upper Saddle River
Qiao Q, Su L, Beck J, McLeskey JT (2005) Characteristics of water-soluble polythiophene: TiO2 composite and its application in photovoltaics. J Appl Phys 98:094906
Afroze T, Bhuiyan AH (2010) Infrared and ultraviolet-visible spectroscopic studies of plasma polymerized 1, 1, 3, 3-tetramethoxypropane thin films. Thin Solid Films 519:1825–1830
Acknowledgement
This research work was carried out in the Institute of Radiation and Polymer Technology (IRPT) of Bangladesh Atomic Energy Research and Establishment (AERE) and Pilot Plant and Process Development Centre (PP & PDC) of Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Das, S.K., Hasan, M., Islam, J.M.M. et al. Characterization of solution casting derived carbon nanotube reinforced poly(vinyl alcohol) thin films. Int J Plast Technol 21, 338–350 (2017). https://doi.org/10.1007/s12588-017-9188-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12588-017-9188-1