Advertisement

International Journal of Plastics Technology

, Volume 21, Issue 2, pp 313–325 | Cite as

Enhancement of thermal and mechanical properties of high density polyethylene using commercial clays

  • Lei Hu
  • Éric Leclair
  • Carl Diez
  • Pascal Y. Vuillaume
Research Article
  • 41 Downloads

Abstract

The properties required for rainwater containers and pipes were discussed. This work aimed at improving the overall properties of high density polyethylene (HDPE) with commercially available clays for rainwater harvesting system. Ten types of clay were respectively incorporated into HDPE matrix via melt extrusion. Morphological, structural, mechanical and thermal characterizations were performed. The findings show that the clay dispersion state was determined by the thermal stability of their organomodifier. Thermally stable organomodifier dimethyl di(hydrogenated tallow) (2M2HT) prevents clay aggregation and contributes to clay intercalation. The incorporation of high-aspect-ratio clays containing a thermal stable organomodifier improved the mechanical properties of HDPE. Increased Young’s modulus and tensile strength were obtained by addition of appropriate clays. The oxidative induction time (OIT) of clay-HDPE blends were dramatically decreased by the presence of organomodifiers and contaminants. Only unmodified clay with a low impurity content showed less reduction in OIT values. Lastly, it was found that the thermal degradation behavior of blends was related to the dispersion state and the impurity content of clays.

Keywords

Clays Polyethylene Mechanical properties Thermal degradation Oxidative induction time 

Notes

Acknowledgements

The authors acknowledge the financial support of College and Community Innovation Program-Innovation Enhancement (CCI-IE) Grants (Canada). AGY Consulting Inc. is acknowledged for providing clay samples. We are also thankful to Mr. A. Mehamha for his helpful contribution. Mrs. Julie Alain, Mrs. Mado Poulin, Mrs. Michèle Morin and Mr. Steeve Lacasse are warmly thanked for their technical supports.

References

  1. 1.
    Zhou Q (2014) A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 6:976–992. doi: 10.3390/w6040976 CrossRefGoogle Scholar
  2. 2.
    Zelenakova M, Markovic G, Kaposztasova D, Vranayova Z (2014) Rainwater management in compliance with sustainable design of builings. Procedia Eng 89:1515–1521. doi: 10.1016/j.proeng.2014.11.442 CrossRefGoogle Scholar
  3. 3.
    Dziopak J, Slys D (2015) Stormwater management and retention in urban catchment. In: Hlavinek P, Zelenakova M (eds) Storm water management: examples from Czech Republic, Slovakia and Poland. Springer, Cham, pp 43–66CrossRefGoogle Scholar
  4. 4.
    The Freedonia Group (2012) Large diameter pipe-Demand and sales forecasts, market share, market size, market leaders. In: Industry Study 2974, The Freedonia Group, ClevelandGoogle Scholar
  5. 5.
    Sanchez-Valdes S, Mendez-Nonell J, Ramos de Valle LF, Lozano-Ramirez T, Ramirez-Vargas E, Lopez-Quintanilla ML, Gutierrez-Rodriguez JM (2009) Effect of different amine modified clays on the compatibility and clay dispersion of polypropylene nanocomposites. e-Polymers 9:1499–1514. doi: 10.1515/epoly.2009.9.1.1499 CrossRefGoogle Scholar
  6. 6.
    Lin JJ, Chan YN, Lan YF (2010) Hydrophobic modification of layered clays and compatibility for epoxy nanocomposites. Materials 3:2588–2605. doi: 10.3390/ma3042588 CrossRefGoogle Scholar
  7. 7.
    Wang X, Su Q, Shan J, Zheng J (2014) The effect of clay modification on the mechanical properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites prepared by in situ polymerization. Polym Compos. doi: 10.1002/pc.23343 Google Scholar
  8. 8.
    Kato M, Okamoto H, Hasegawa N, Tsukigase A, Usuki A (2003) Preparation and properties of polyethylene-clay hydrids. Polym Eng Sci 43:1312–1316. doi: 10.1002/pen.10111 CrossRefGoogle Scholar
  9. 9.
    Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87:183–189. doi: 10.1016/j.polymdegradstab.2004.08.005 CrossRefGoogle Scholar
  10. 10.
    Jacquelot E, Espuche E, Gerard JF, Duchet J, Mazabraud P (2006) Morphology and gas barrier properties of polyethylene-based nanocomposites. J Polym Sci, Part B: Polym Phys 44:431–440. doi: 10.1002/polb.20707 CrossRefGoogle Scholar
  11. 11.
    Zhang M, Sundararaj U (2006) Thermal, rheological, and mechanical behaviors of LLDPE/PEMA/Clay nanocomposites: effect of interaction between polymer, compatibilizer, and nanofiller. Macromol Mater Eng 291:697–706. doi: 10.1002/mame.200500399 CrossRefGoogle Scholar
  12. 12.
    Zhong Y, Janes D, Zheng Y, Hetzer M, De Kee D (2007) Mechanical and oxygen barrier properties of organoclay-polyethylene nanocomposite films. Polym Eng Sci 47:1101–1107. doi: 10.1002/pen.20792 CrossRefGoogle Scholar
  13. 13.
    Garcia N, Hoyos M, Guzman J, Tiemblo P (2009) Comparing the effect of nanofillers as thermal stabilizers in low density polyethylene. Polym Degrad Stab 94:39–48. doi: 10.1016/j.polymdegradstab.2008.10.011 CrossRefGoogle Scholar
  14. 14.
    Hu L, Leclair E, Poulin M, Colas F, Baldet P, Vuillaume PY (2016) Clay/polyethylene composites with enhanced barrier properties for seed storage. Polym Polym Compos 24:387–394Google Scholar
  15. 15.
    Weon JI, Sue HJ (2004) Effects of clay orientation and aspect ratio on the mechanical behavior of nylon-6 nanocomposite. Polymer 46:6325–6334. doi: 10.1016/j.polymer.2005.05.094 CrossRefGoogle Scholar
  16. 16.
    Osman MA, Mittal V, Lusti HR (2004) The aspect ratio and gas permeation in polymer-layered silicate nanocomposites. Macromol Rapid Commun 25:1145–1149. doi: 10.1002/marc.200400112 CrossRefGoogle Scholar
  17. 17.
    Lu C, Mai Y (2005) Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Phys Rev Lett 95:088303. doi: 10.1103/PhysRevLett.95.088303 CrossRefGoogle Scholar
  18. 18.
    Durmus A, Kasgoz A, Macosko CW (2008) Mechanical properties of linear low-density polyethylene (LLDPE)/clay nanocomposites: estimation of aspect ratio and interfacial strength by composite models. J Macromol Sci Part B Phys 47:608–619. doi: 10.1080/00222340801957780 CrossRefGoogle Scholar
  19. 19.
    Papageorgiou GZ, Karandrea E, Giliopoulos D, Papageorgiou DG, Ladavos A, Katerinopoulou A, Achilias DS, Konstantinos S, Triantafyllidis KS, Bikiaris DN (2014) Effect of clay structure and type of organomodifier on the thermal properties of poly(ethylene terephthalate) based nanocomposites. Thermochim Acta 576:84–96. doi: 10.1016/j.tca.2013.12.006 CrossRefGoogle Scholar
  20. 20.
    Araujo A, Botelho G, Oliveira M, Machado AV (2014) Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl Clay Sci 88–89:144–150. doi: 10.1016/j.clay.2013.12.005 CrossRefGoogle Scholar
  21. 21.
    Luduena LN, Vazquez A, Alvarez VA (2013) Effect of the type of clay organo-modifier on the morphology, thermal/mechanical/impact/barrier properties and biodegradation in soil of polycaprolactone/clay nanocomposites. J Appl Polym Sci 128:2648–2657. doi: 10.1002/app.38425 CrossRefGoogle Scholar
  22. 22.
    Benali S, Peeterbroeck S, Larrieu L, Laffineur F, Pireaux J, Alexandre M, Dubois P (2008) Study of interlayer spacing collapse during polymer/clay nanocomposite melt intercalation. J Nanosci Nanotechnol 8:1707–1713. doi: 10.1166/jnn.2008.020 CrossRefGoogle Scholar
  23. 23.
    Lee JW, Lim YT, Park OO (2000) Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym Bull 45:191–198. doi: 10.1007/s002890070048 CrossRefGoogle Scholar
  24. 24.
    Gelfer M, Burger C, Fadeev A, Sics I, Chu B, Hsiao BS, Heintz A, Kojo K, Hsu SL, Si M, Rafailovich M (2004) Thermally induced phase transitions and morphological changes in organoclays. Langmuir 20:3746–3758. doi: 10.1021/la035361h CrossRefGoogle Scholar
  25. 25.
    Filippi S, Paci M, Polacco G, Dintcheva NT, Magagnini P (2011) On the interlayer spacing collapse of Cloisite® 30B organoclay. Polym Degrad Stab 96:823–832. doi: 10.1016/j.polymdegradstab.2011.02.008 CrossRefGoogle Scholar

Copyright information

© Central Institute of Plastics Engineering & Technology 2017

Authors and Affiliations

  • Lei Hu
    • 1
  • Éric Leclair
    • 1
  • Carl Diez
    • 2
  • Pascal Y. Vuillaume
    • 1
  1. 1.Centre de Technologie Minérale et de Plasturgie (CTMP)Thetford MinesCanada
  2. 2.Soleno Inc.Saint-Jean-sur-RichelieuCanada

Personalised recommendations