Skip to main content
Log in

Effect of sulfonated groups on the proton and methanol transport behavior of irradiated PS/PEVA membrane

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

Poly(ethylene vinyl acetate) (PEVA) and polystyrene (PS) were completely miscible for forming a blend polymer using gamma irradiation. After irradiation process the crosslinking takes place even at room temperature in a toluene solvent. As a result of which an insoluble blend polymer PS/PEVA is formed after casting. To produce the polymer blend membrane as proton exchange membranes for fuel cells, the sulfonation of PS/PEVA take place using acetyl sulphate as the sulfonating agent. Sulfonated blend polymer (PS-SO3H/PEVA) makes the production of the membrane exhibited extremely high methanol uptake and methanol permeability. The blend membranes also exhibited superior water uptake capacity and water swellability. Now, a blend polymer (PS-SO3H/PEVA) electrolyte membrane is ready for using as proton electrolyte membranes fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). From a conceptual point of view, DMFC and PEMFC systems are very similar, except for being supplied by different fuels such as methanol and hydrogen, respectively. Commonly, PEMFCs are performed at temperature lower than 100 °C and, the ideal working temperature of the PEMFCs should be above 100 °C. TGA confirmed that the irradiated PS/PEVA membrane is stable at a high temperature due to the crosslinked induced by gamma irradiation. Therefore, According to the interesting performances in terms of proton conductivity (3.2 × 103−) Scm−1 at 40 kHz and thermal stability and costs the PS-SO3H/PEVA very suitable for full cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dutta K, Kumar P, Das S, Kundu PP (2014) Utilization of conducting polymers in fabricating polymer electrolyte membranes for application in direct methanol fuel cells. Polym Rev 54:1–32

    Article  CAS  Google Scholar 

  2. Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832

    Article  CAS  Google Scholar 

  3. Zhao C, Lin H, Zhang Q, Na H (2010) Layer-by-layer self-assembly of polyaniline on sulfonated poly(arylene ether ketone) membrane with high proton conductivity and low methanol crossover. Int J Hydrog Energy 35:10482–10488

    Article  CAS  Google Scholar 

  4. Shimizu T, Momma T, Mohamedi M, Osaka T, Sarangapani S (2004) Design and fabrication of pumpless small direct methanol fuel cells for portable applications. J Power Sour 137:277–283

    Article  CAS  Google Scholar 

  5. Kumar P, Dutta K, Kundu PP (2013) Enhanced performance of direct methanol fuel cells: a study on the combined effect of various supporting electrolytes, flow channel designs and operating temperatures. Int J Energy Res. doi:10.1002/er.3034

    Google Scholar 

  6. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Edit 44:2636–2639

    Article  CAS  Google Scholar 

  7. Furukawa K, Okajima K, Sudoh M (2005) Structural control and impedance analysis of cathode for direct methanol fuel cell. J Power Sour 139:9–14

    Article  CAS  Google Scholar 

  8. Mokrini A, Huneault MA (2006) Proton exchange membranes based on PVDF/SEBS blends. J Power Sour 154:51–58

    Article  CAS  Google Scholar 

  9. Zhang Y, Cai W, Si F, Ge J, Liang L, Liu C, Xing W (2012) A modified Nafion membrane with extremely low methanol permeability via surface coating of sulfonated organic silica. Chem Commun 48:2870–2872

    Article  CAS  Google Scholar 

  10. Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411–412:35–44

    Article  Google Scholar 

  11. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384

    Article  CAS  Google Scholar 

  12. Neelakandan S, Rana D, Matsuura T, Muthumeenal A, Kanagaraj P, Nagendran A (2014) Fabrication and electrochemical properties of surface modified sulfonated poly(vinylidenefluoride-co-hexafluoropropylene) membranes for DMFC application. Solid State Ion 268:35–41

    Article  CAS  Google Scholar 

  13. Dutta K, Das S, Kumar P, Kundu PP (2014) Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: a preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP. Appl Energy 118:183–191

    Article  CAS  Google Scholar 

  14. Das S, Kumar P, Dutta K, Kundu PP (2014) Partial sulfonation of PVdF-co-HFP: a preliminary study and characterization for application in direct methanol fuel cell. Appl Energy 113:169–177

    Article  CAS  Google Scholar 

  15. Ghobashy MM, Khafaga MR (2016) Radiation synthesis and magnetic property investigations of the graft copolymer poly (ethylene-g-acrylic acid)/Fe3O4 film. J Supercond Novel Magn 30(2):401–406

    Article  Google Scholar 

  16. Ghobashy MM, Abdeen ZI (2016) Radiation crosslinking of polyurethanes: characterization by FTIR, TGA, SEM, XRD, and Raman Spectroscopy. J Polym 2016, Article ID 9802514. doi:10.1155/2016/9802514

  17. Ghobashy MM, Elhady MA (2017) Radiation crosslinked magnetized wax (PE/Fe3O4) nano composite for selective oil adsorption. Compos Commun 3:18–22

    Article  Google Scholar 

  18. Ghobashy MM (2017) Combined ultrasonic and gamma-irradiation to prepare TiO2@PET-g-PAAc fabric composite for self-cleaning application. Ultrason Sonochem 37:529–535

    Article  CAS  Google Scholar 

  19. Ghobashy MM, Khafaga MR (2016) Chemical modification of nano polyacrylonitrile prepared by emulsion polymerization induced by gamma radiation and their use for removal of some metal ions. J Polym Environ. doi:10.1007/s10924-016-0805-4

    Google Scholar 

  20. Ghobashy MM (2017) pH-sensitive wax emulsion copolymerization with acrylamide hydrogel using gamma irradiation for dye removal. Radiat Phys Chem 134:47–55

    Article  CAS  Google Scholar 

  21. Arcana IM, Bundjali B, Rochliadi A, Hariyawati NK (2013) Rural information & communication technology and electric-vehicle technology (rICT & ICeV-T), 2013 Joint international conference on 2013, pp 1–4

  22. Rubinger C, Martins C, De Paoli M-A, Rubinger R (2007) Sulfonated polystyrene polymer humidity sensor: synthesis and characterization. Sens Actuat B 123:42

    Article  CAS  Google Scholar 

  23. Rimez B, Rahier H, Van Assche T, Artoos T, Biesemans M, Van Mele B (2008) The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), part I: experimental study of the degradation mechanism. Polym Degrad Stab 93(4):800–810

    Article  CAS  Google Scholar 

  24. Müller F, Ferreira CA, Franco L, Puiggalí J, Alemán C, Armelin E (2012) New sulfonated polystyrene and styrene–ethylene/butylene–styrene block copolymers for applications in electrodialysis. J Phys Chem B 116(38):11767–11779

    Article  Google Scholar 

  25. Sadeghi M et al (2008) Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. J Membr Sci 322(2):423–428

    Article  CAS  Google Scholar 

  26. Sefadi SJ, Luyt AS, Pionteck J (2015) Effect of surfactant on EG dispersion in EVA and thermal and mechanical properties of the system. J Appl Polym Sci 132:4

    Google Scholar 

  27. Hwang S-H, Kim M-J, Jung J-C (2002) Mechanical and thermal properties of syndiotactic polystyrene blends with poly(p-phenylene sulfide). Eur Polym J 38(9):1881–1885

    Article  CAS  Google Scholar 

  28. Eisenberg A (1970) Clustering of ions in organic polymers. A theoretical approach. Macromolecules 3:147–154

    Article  CAS  Google Scholar 

  29. Kim YS, Hickner MA, Dong LM, Pivovar BS, McGrath JE (2004) Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability. J Membr Sci 243:317–326

    Article  CAS  Google Scholar 

  30. Li X, Chen D, Dan X, Zhao C, Wang Z, Hui L, Na H (2006) SPEEKK/polyaniline (PANI) composite membranes for direct methanol fuel cell usages. J Membr Sci 275(1):134–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mohamady Ghobashy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobashy, M.M. Effect of sulfonated groups on the proton and methanol transport behavior of irradiated PS/PEVA membrane. Int J Plast Technol 21, 130–143 (2017). https://doi.org/10.1007/s12588-017-9176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-017-9176-5

Keywords

Navigation