Skip to main content

Advertisement

Log in

Design of poly(1-hexadecene-sulfone)/poly(1,4-phenylene sulfide) membrane containing nano-zeolite and carbon nanotube for gas separation

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

Impregnating polymeric membranes with inorganic zeolite particles and organic carbon nanotube particles led to organic–inorganic nanocomposite membranes. In this work, nano-zeolite (NZ) and carbon nanotube (CNT) were used as nanofiller materials, while poly(1-hexadecene-sulfone)/poly(1,4-phenylene sulfide) (PHS/PS) blend was used as matrix material. PHS/PS/NZ membranes have shown fine dispersion, although layered-particulate morphology was seen in PHS/PS/NZ–CNT 10 membrane. Tensile strength of PHS/PS/NZ 1–10 was 53–58 MPa, while PHS/PS/NZ–CNT 1–10 showed higher values 67–78 MPa. Young’s Modulus of PHS/PS/NZ 1–10 was 122.2–137.7 MPa, while PHS/PS/NZ–CNT 1–10 showed higher values 143.4–166.5 MPa. Moreover, the nano-zeolite/carbon nanotube (NZ–CNT) filler was found more effective than nano-zeolite in enhancing CO2 permeability and permselectivity. The permeability PCO2 of PHS/PS/NZ and PHS/PS/NZ–CNT membranes increased with increasing filler concentration and reached 177.3 Barrer at 10 wt% filler content. The permselectivity αCO2/N2 for PHS/PS/NZ–CNT 10 membrane (36.1 Barrer) was also higher than PHS/PS/NZ 10 (32.9 Barrer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muntha ST, Kausar A, Siddiq M (2016) A review on zeolite reinforced polymeric membranes: salient features and applications. Polym Plast Technol Eng. doi:10.1080/03602559.2016.1185631

    Google Scholar 

  2. Silva RP, Pistor V, Vaghetti JC, Oliveira RV (2016) Influence of TiO2 on the isothermal crystallization of polypropylene containing nanocomposites. Int J Plast Technol. doi:10.1007/s12588-016-9137-4

    Google Scholar 

  3. Silva RP, Oliveira RV (2016) Non-isothermal degradation kinetics and morphology of PP/TiO2 nanocomposites using titanium n-butoxide precursor. Int J Plast Technol. doi:10.1007/s12588-016-9160-5

    Google Scholar 

  4. Mintova S, Olson NH, Valtchev V, Bein T (1999) Mechanism of zeolite a nanocrystal growth from colloids at room temperature. Science 283:958–960

    Article  CAS  Google Scholar 

  5. Tschernich RW (1992) Zeolites of the world. Geoscience Press, Phoenix

    Google Scholar 

  6. Valtchev VP, Tosheva L, Bozhilov KN (2005) Synthesis of zeolite nanocrystals at room temperature. Langmuir 21:10724–10729

    Article  CAS  Google Scholar 

  7. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  8. Kausar A, Siddiq M (2014) Influence of interface interaction on thermal, mechanical and conducting properties of segmented poly (azo-urethane)/carbon nanotube composites. Int J Plast Technol 18:203–222

    Article  CAS  Google Scholar 

  9. Sajna VP, Mohanty S, Nayak SK (2014) Fabrication and characterization of bionanocomposites based on poly (lactic acid), banana fiber and nanoclay. Int J Plast Technol. doi:10.1007/s12588-014-9088-6

    Google Scholar 

  10. Ali W, Kausar A, Iqbal T (2015) Reinforcement of high performance polystyrene/polyamide/polythiophene with multi-walled carbon nanotube obtained through various routes. Compos Interface 22:885–897

    Article  CAS  Google Scholar 

  11. Mehwish N, Kausar A, Siddiq M (2015) Polyvinylidenefluoride/poly(styrene-butadiene-styrene)/silver nanoparticle-grafted-acid chloride functional MWCNTs-based nanocomposites: preparation and properties. Polym Plast Technol Eng 54:474–483

    Article  CAS  Google Scholar 

  12. Kausar A (2014) Proton exchange fuel cell membranes of poly(benzimidazole-amide)/sulfonated polystyrene/titania nanoparticles-grafted-multi-walled carbon nanotubes. J Plast Film Sheet 31:27–44

    Article  Google Scholar 

  13. Higuchi A, Agatsuma T, Uemiya S, Kojima T, Mizoguchi K, Pinnau I, Nagai K, Freeman BD (2000) Preparation and gas permeation of immobilized fullerene membranes. J Appl Polym Sci 77:529–537

    Article  CAS  Google Scholar 

  14. Tul Muntha S, Kausar A, Siddiq M (2016) Progress on polymer-based membranes in gas separation technology. Polym Plast Technol Eng. doi:10.1080/03602559.2016.1163592

    Google Scholar 

  15. Cornelius C, Marand J (2002) Hybrid silica-polyimide composite membranes: gas transport properties. J Membr Sci 202:97–118

    Article  CAS  Google Scholar 

  16. Moaddeb M, Koros WJ (1997) Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J Membr Sci 125:143–163

    Article  CAS  Google Scholar 

  17. Higuchi A, YoshidaT Imizu T, Mizoguchi K, He Z, Pinnau I, Nagai K, Freeman BD (2000) Gas permeation of fullerene-dispersed poly(1-trimethylsilyl-1-propyne) membranes. J Polym Sci Part B 38:1749–1755

    Article  CAS  Google Scholar 

  18. Joly CS, Goizet JC, Schrotter J, Sanchez M (1997) Sol–gel polyimide-silica composite membrane: gas transport properties. J Membr Sci 130:63–74

    Article  CAS  Google Scholar 

  19. He Z, Pinnau I, Morisato A (2002) Nanostructured poly (4-methy-2-pentyne)/silica hybrid membranes for gas separation. Desalination 146:11–15

    Article  CAS  Google Scholar 

  20. Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2003) Sorption, transport, and structural evidence for enhanced free volume in poly (4-methyl-2-pentyne)/fumed silica nanocomposite membranes. Chem Mater 15:109–123

    Article  CAS  Google Scholar 

  21. Kim S, Pechar TW, Marand E (2006) Poly (imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192:330–339

    Article  CAS  Google Scholar 

  22. Kim JH, Lee YM (2001) Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes. J Membr Sci 193:209–225

    Article  CAS  Google Scholar 

  23. Mahajan R, Zimmerman CM, Koros WJ (1999) Fundamental and practical aspects of mixed matrix gas separation membranes. In: Freeman BD, Pinnau I (eds) Polymer membranes for gas and vapor separation. Chemistry and Materials Science, vol 733. American Chemical Society, Washington, DC, pp 277–286

  24. Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G (1997) Poly(amide–imide)/TiO2 nanocomposite gas separation membranes: fabrication and characterization. J Membr Sci 135:65

    Article  CAS  Google Scholar 

  25. Patel NP, Miller AC, Spontak RJ (2003) Highly CO2-permeable and selective polymer nanocomposite membranes. Adv Mater 15:729–733

    Article  CAS  Google Scholar 

  26. Koros WJ, Chan AH, Paul DR (1977) Sorption and transport of various gases in polycarbonate. J Membr Sci 2:165–190

    Article  CAS  Google Scholar 

  27. Charkhi A, Kazemian H, Kazemeini M (2010) Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders. Powder Technol 203:389–396

    Article  CAS  Google Scholar 

  28. Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJ (2001) Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem Mater 13:4416–4418

    Article  CAS  Google Scholar 

  29. Pinnau I, Koros WJ (1991) Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J Appl Polym Sci 43:1491–1502

    Article  CAS  Google Scholar 

  30. Fathizadeh M, Aroujalian A, Raisi A (2011) Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J Membr Sci 375:88–95

    Article  CAS  Google Scholar 

  31. O’Brien-Abraham J, Kanezashi M, Lin YS (2007) A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes. Micropor Mesopor Mater 105:140–148

    Article  Google Scholar 

  32. Jia MD, Pleinemann KV, Behling RD (1992) Preparation and characterization of thin-film zeolite–PDMS composite membranes. J Membr Sci 73:119–128

    Article  CAS  Google Scholar 

  33. Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2002) Ultrapermeable, reverse-selective nanocomposite membranes. Science 296:519–522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Kausar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kausar, A. Design of poly(1-hexadecene-sulfone)/poly(1,4-phenylene sulfide) membrane containing nano-zeolite and carbon nanotube for gas separation. Int J Plast Technol 21, 96–107 (2017). https://doi.org/10.1007/s12588-017-9173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-017-9173-8

Keywords

Navigation