Skip to main content

Advertisement

Log in

Influence of interface interaction on thermal, mechanical and conducting properties of segmented poly (azo-urethane)/carbon nanotube composites

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

In this research work, solution dispersion technique was employed for the preparation of segmented poly (azo-urethane)/multi-walled carbon nanotube (SPAU/MWCNT) nanocomposites whereas the polyurethane was obtained using single-step procedure. The carboxylated nanotube-based non-compatiblized SPAU/MWCNT and acid chloride functionalized MWCNT-based compatiblized systems were prepared. Afterwards, the hydroxyl end-terminated polyurethane was grafted to acid chloride functional MWCNT through esterification reaction. The grafting to the carboxylated nanotube was achieved via physical interaction. The FTIR spectra confirmed the covalent bonding between the matrix and side-walls of nanotube. Various nanotube loading levels and surface-modified groups were considered to regulate mechanical, thermal and electrical performance of SPAU/MWCNT. The experimental results showed that a moderate loading-level of 5 wt. % MWCNT produced the maximum tensile strength (63.1 MPa) in compatiblized nanocomposites, while the tensile strength of non-compatiblized SPAU/MWCNT was lower (47.25 MPa). Comparative studies based on scanning and transmission electron microscopy of the chemically bonded samples also revealed the covalent coating character and unique nano-fibriller morphology. The dynamic mechanical analysis of nanocomposites showed segmental rigidity due to covalent linking and sample had Tg of 142–152 °C. Addition of acid chloride functionalized MWCNT also contributed to an improvement in the electrical conductivity (2.01-4.31 S cm−1) relative to SPAU/carboxylated MWCNT 1.27-2.86 S cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Scheme 1
Scheme 2
Scheme 3
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9

Similar content being viewed by others

References

  1. Zdenko S, Dimitrios T, Konstantinos P, Costas G (2010) Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  2. Nanda GS, Sravendra R, Jae WC, Lin L, Siew HC (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  Google Scholar 

  3. Lin Y, Zhou B, Fernando SKA, Liu P, Allard LF, Sun YP (2003) Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36:7199–7204

    Article  CAS  Google Scholar 

  4. Liu T, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222

    Article  CAS  Google Scholar 

  5. Sreekumar TV, Liu T, Min BG, Go H, Kumar S, Hauge RH, Smalley RE (2004) Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv Mater 16:58–61

    Article  CAS  Google Scholar 

  6. Brown JM, Anderson DP, Justice RS, Lafdi K, Belfor M, Strong KL, Schaefer DW (2005) Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine. Polymer 46:10854–10865

    Article  CAS  Google Scholar 

  7. Kanagaraj S, Varanda FR, Zhiltsova TV, Oliveira MSA, Simoes JAO (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Comp Sci Technol 67:3071–3077

    Article  CAS  Google Scholar 

  8. Grossiord N, Miltner HE, Loos J, Meuldijk J, Van Mele B, Koning CE (2007) On the Crucial role of wetting in the preparation of conductive polystyrene-carbon nanotube composites. Chem Mater 19:3787–3792

    Article  CAS  Google Scholar 

  9. Chen J, Hamon MA, Hu H, Chen YS, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    Article  CAS  Google Scholar 

  10. Sano M, Kamino A, Okamura J, Shinkai S (2001) Self-Organization of PEO-graft-single-walled carbon nanotubes in solutions and langmuir-blodgett films. Langmuir 17:5125–5128

    Article  CAS  Google Scholar 

  11. Ying YM, Saini RK, Liang F, Sadana AK, Billups WE (2003) Functionalization of carbon nanotubes by free radicals. Org Lett 5:1471–1473

    Article  CAS  Google Scholar 

  12. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic Functionalization of canbon nanotubes. J Am Chem Soc 124:760–761

    Article  CAS  Google Scholar 

  13. Ruan SL, Gao P, Yang XG, Yu TX (2003) Toughening High performance ultrahigh molecular weight polyethylene using multi-walled carbon nanotubes. Polymer 44:5643–5654

    Article  CAS  Google Scholar 

  14. Jin Z, Pramoda KP, Xu G, Goh SH (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites. Chem Phys Lett 337:43–47

    Article  CAS  Google Scholar 

  15. Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in CNT/Epoxy-Composites. Chem Phys Lett 370:820–824

    Article  CAS  Google Scholar 

  16. Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207:1773–1780

    Article  CAS  Google Scholar 

  17. Sahoo NG, Jung YC, Yoo HJ, Cho JW (2007) Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos Sci Technol 67:1920–1929

    Article  CAS  Google Scholar 

  18. Chattopadhyay DK, Dean CW (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  19. Marc B, Muhammad YR, Andreas L (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410

    Article  Google Scholar 

  20. Kong H, Gao C, Yan D (2004) Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 126:412–413

    Article  CAS  Google Scholar 

  21. Liu I, Huang H, Chang HC, Tsai H, Hsu C, Tsiang RC (2004) Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: Anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules 37:283–287

    Article  CAS  Google Scholar 

  22. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    Article  CAS  Google Scholar 

  23. Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Poly (vinylidene fluoride)-graft-poly (2-hydroxyethyl methacrylate): A novel material for high energy density capacitors. J Mater Chem 21:3751–3759

    Article  CAS  Google Scholar 

  24. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Advances 1:576–578

    Article  CAS  Google Scholar 

  25. Thakur VK, Ding G, Ma J, Lee PS, Lu X (2012) Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Adv Mater 24:4071–4096

    Article  CAS  Google Scholar 

  26. Thakur VK, Yan J, Lin M-F, Zhi C, Golberg D, Bando Y, Sim R, Lee PS (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Article  CAS  Google Scholar 

  27. Hussain S T U.S. (2009) Novel catalyst to manufacture carbon nanotubes and hydrogen gas. PatentUS2009208403

  28. Hussain ST, Abbas F, Kausar A, Khan MR (2012) New polyaniline/polypyrrole/polythiophene and functionalized multi-walled carbon nano-tubes based nanocomposites: Layer by layer in-situ polymerization. High Perform Polym 25:70–78

    Article  Google Scholar 

  29. Kausar A, Hussain ST (2013) Physical and thermal properties of thermoplastic poly (azo-urethane) s: Effect of novel chain extender and hard segment content. High Perform Polym 25:337–347

    Article  Google Scholar 

  30. Sahoo NG, Jung YC, Yoo HJ, Cho JW (2007) Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Comp Sci Tech 67:1920–1929

    Article  CAS  Google Scholar 

  31. Wang T-L, Tseng C-G (2007) Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane. J Appl Polym Sci 105:1642–1650

    Article  CAS  Google Scholar 

  32. Buffa F, Abraham GA, Grady BP, Resasco D (2007) Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites. J Polym Sci Part B Polym Phys 45:490–501

    Article  CAS  Google Scholar 

  33. Chattopadhyay DK, Dean CW (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Kausar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kausar, A., Siddiq, M. Influence of interface interaction on thermal, mechanical and conducting properties of segmented poly (azo-urethane)/carbon nanotube composites. Int J Plast Technol 18, 203–222 (2014). https://doi.org/10.1007/s12588-014-9079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-014-9079-7

Keywords

Navigation