Skip to main content
Log in

Development and characterization of pectin/gelatin hydrogel membranes for wound dressing

International Journal of Plastics Technology

Cite this article

Abstract

The present work deals with the development of pectin-gelatin (PEGE) hydrogel membranes for wound dressing applications. The prepared hydrogels were characterized by FTIR spectroscopy, XRD spectroscopy, water vapor transmission rate (WVTR) test and tensile strength test. Morphology and thermal stability of the membranes were analyzed by Field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA). The swelling studies of the hydrogels were conducted in different pH buffer solutions (pH 1.4, 5.4, 7.4 and 9.4). FTIR spectra of the hydrogels indicated considerable lowering in usual –OH stretching vibration peak of pectin and gelatin, which suggests the development of probable intermolecular interactions between the two natural polymers. XRD study revealed the decrease in crystallinity of hydrogels as compared to parent pectin. The morphological analysis of the hydrogel revealed highly interconnected honeycomb type architecture with pore size ranging from 10 to 40 μm. It was found that increase in gelatin ratio significantly improves the porous nature of the membranes. TGA study showed the enhanced thermal stability of PEGE hydrogel as compared to reference pectin. Tensile strength (TS) and elongation at break (EB) was found to increase with gelatin content in the hydrogel membranes but further increase leads to decrease in TS and EB. The WVTR analysis of the membranes showed the moisture retentive properties indicating its possible use in moist wound care. The PEGE hydrogels were found to be cytocompatible with B16 melanoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Winter GD (1962) Nature 193:293–294

    Article  CAS  Google Scholar 

  2. Barnett SE, Irving SJ (1991) Studies of wound healing and the effect of dressings. In: Szycher M (ed) High performance biomaterials. Lancaster, Technonic, pp 583–620

    Google Scholar 

  3. Quinn KJ, Courtney JM, Evans JH, Gaylor JDS, Reid WH (1985) Biomaterials 6:369–377

    Article  CAS  Google Scholar 

  4. Aoki T, Kawashima M, Katono H, Sanui K, Ogata N, Okano T, Sakurai Y (1994) Macromol 27:947–952

    Article  CAS  Google Scholar 

  5. Sasase H, Aoki T, Katono H, Sanui K, Ogata N (1992) Makromol Chem Rapid Commum 13:577

    Article  CAS  Google Scholar 

  6. Wang PY, Samji NA (1980) Org Coat Plast Chem 42:628–633

    CAS  Google Scholar 

  7. Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF (2004) J Biomed Mater Res Part B 69B:216–222

    Article  CAS  Google Scholar 

  8. Kichöfen B, Wokalek H, Scheel D, Ruh H (1986) Biomaterials 7:67–72

    Article  Google Scholar 

  9. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Biomaterials 32:6335

    Article  Google Scholar 

  10. Cann MC, Roberts K (1996) Plant cell wall architecture: the role of pectins and pectinases. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Elsevier science, Amsterdam, Netherlands, pp 91–107

    Google Scholar 

  11. May CD (1990) Carbohy Poly 12:91

    Google Scholar 

  12. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) FEBS Lett 32:195

    Article  CAS  Google Scholar 

  13. Ashford M, Fell J, Attwood D, Sharma H, Woodhead P (1993) J of Control Rel 26:213

    Article  CAS  Google Scholar 

  14. Rubenstein A, Radai R, Ezra M, Pathak S, Rokem JS (1993) Pharm Res 10:258

    Article  Google Scholar 

  15. Radai R, Rubenstein A (1995) Euro J of Pharma and Biopharm 41:291

    Google Scholar 

  16. Warkley Z, Fell JT, Attwood D, Parkins D (1996) Pharm Res 13:1210

    Article  Google Scholar 

  17. Warkley Z, Fell JT, Attwood D, Parkins D (1997) Inter J of Pharm 153:219

    Article  Google Scholar 

  18. Tharanathan RN (2003) Tre food Sci Technol 14:71

    Article  CAS  Google Scholar 

  19. Fishman ML, Coffin DR (1998) Carbohy Poly 35:195

    Article  CAS  Google Scholar 

  20. Fishman ML, Coffin DR, Ly TV (1996) J of Appl Poly Sci 61:71

    Article  Google Scholar 

  21. Ramachandran GN (1967) Ramakrishnan C. In: Ramachandran GN, Reddi AH (eds) Biochemistry of Collagen. Plenum Press, New York

    Google Scholar 

  22. Brodsky B, Ramshaw JAM (1997) Matrix Biol 15:545

    Article  CAS  Google Scholar 

  23. Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y (2000) Biomaterials 21:489

    Article  CAS  Google Scholar 

  24. Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K (2002) Biomaterials 23:3227

    Article  CAS  Google Scholar 

  25. Ito A, Mase A, Takizawa Y, Shinkai M, Honda H, Hata KI, Ueda M, Kobayashi T (2003) J of Bio & Bioeng 95:196

    CAS  Google Scholar 

  26. Chang CH, Liu HC, Lin CC, Chou CH, Lin FH (2003) Biomaterials 24:4853

    Article  CAS  Google Scholar 

  27. Neumann PM, Zur B, Ehrenreich Y (1981) J of Biomed Mat Res 15:9

    Article  CAS  Google Scholar 

  28. Petersen JK, Krogsgaaed J, Nielson KM, Norgaard EB (1984) Intern J of Oral Surg 13:406

    Article  CAS  Google Scholar 

  29. Shinde BG, Erhan S (1992) Biomed Mat & Eng 2:127

    CAS  Google Scholar 

  30. Di Silvio L, Guruv N, Kayser MV, Braden M, Downes S (1994) Biomaterials 15:931

    Article  Google Scholar 

  31. Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N (2001) Biomaterials 22:763

    Article  CAS  Google Scholar 

  32. Jo C, Kang H, Lee NY, Kwon JH, Byun MW (2005) Rad Phys and Chem 72:745

    Article  CAS  Google Scholar 

  33. Anis A, Banthia AK, Bandyopadhyay S (2008) J Power Sour 179:69

    Article  CAS  Google Scholar 

  34. ASTM Standard E96–00 (2000) Standard test methods for water vapor transmission of materials. Annual book of ASTM standards, vol. 4.06. ASTM, Philadelphia

    Google Scholar 

  35. Hu Y, Topolkaraeb V, Hiltner A, Baer E (2001) J Appl Polym Sci 81:1624

    Article  CAS  Google Scholar 

  36. Bechard S, McMullen JN (1986) Intern J of Pharm 31:91

    Article  CAS  Google Scholar 

  37. Hansen MB, Nielsen SE, Berg K (1989) J Immunol Meth 119:203

    Article  CAS  Google Scholar 

  38. Xiao CB, Liu HJ, Lu YS, Zhang LN (2001) J Macromol Sci: Pure & Appl Chem 38:317

    Article  Google Scholar 

  39. Mishra RK, Dutt M, Banthia AK (2008) AAPS Pharm SciTech 9:395

    Article  CAS  Google Scholar 

  40. Wang YW, Wu Q, Chen GQ (2005) Biomacromol 6:566

    Article  CAS  Google Scholar 

  41. Fakirov S, Sarac Z, Anbar T, Boz B, Bahar I, Evstatiev M, Apostolov AA, Mark JE (1996) Kloczkowski A Colloid Polym Sci 274:334

    Article  CAS  Google Scholar 

  42. Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N (1998) Biomaterials 19:2335

    Article  CAS  Google Scholar 

  43. Vlierberghe SV, Cnudde V, Dubruel P, Masschaele B, Cosijns A, Paepe ID, Jacobs PJS, Hoorebeke LV, Remon JP, Schacht E (2007) Biomacromol 8:331

    Article  Google Scholar 

  44. Hong HJ, Jin SE, Park JS, Ahn WS, Kim CK (2008) Biomaterials 29:4831

    Article  CAS  Google Scholar 

  45. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Biomaterials 26:6335

    Article  CAS  Google Scholar 

  46. http://www.burnsurgery.org/Betaweb/Modules/moisthealing/part_2bc.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mishra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mishra, R.K., Majeed, A.B.A. & Banthia, A.K. Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plast Technol 15, 82–95 (2011). https://doi.org/10.1007/s12588-011-9016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-011-9016-y

Keywords

Navigation