Abstract
The present work deals with the development of pectin-gelatin (PEGE) hydrogel membranes for wound dressing applications. The prepared hydrogels were characterized by FTIR spectroscopy, XRD spectroscopy, water vapor transmission rate (WVTR) test and tensile strength test. Morphology and thermal stability of the membranes were analyzed by Field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA). The swelling studies of the hydrogels were conducted in different pH buffer solutions (pH 1.4, 5.4, 7.4 and 9.4). FTIR spectra of the hydrogels indicated considerable lowering in usual –OH stretching vibration peak of pectin and gelatin, which suggests the development of probable intermolecular interactions between the two natural polymers. XRD study revealed the decrease in crystallinity of hydrogels as compared to parent pectin. The morphological analysis of the hydrogel revealed highly interconnected honeycomb type architecture with pore size ranging from 10 to 40 μm. It was found that increase in gelatin ratio significantly improves the porous nature of the membranes. TGA study showed the enhanced thermal stability of PEGE hydrogel as compared to reference pectin. Tensile strength (TS) and elongation at break (EB) was found to increase with gelatin content in the hydrogel membranes but further increase leads to decrease in TS and EB. The WVTR analysis of the membranes showed the moisture retentive properties indicating its possible use in moist wound care. The PEGE hydrogels were found to be cytocompatible with B16 melanoma cells.
This is a preview of subscription content,
to check access.









References
Winter GD (1962) Nature 193:293–294
Barnett SE, Irving SJ (1991) Studies of wound healing and the effect of dressings. In: Szycher M (ed) High performance biomaterials. Lancaster, Technonic, pp 583–620
Quinn KJ, Courtney JM, Evans JH, Gaylor JDS, Reid WH (1985) Biomaterials 6:369–377
Aoki T, Kawashima M, Katono H, Sanui K, Ogata N, Okano T, Sakurai Y (1994) Macromol 27:947–952
Sasase H, Aoki T, Katono H, Sanui K, Ogata N (1992) Makromol Chem Rapid Commum 13:577
Wang PY, Samji NA (1980) Org Coat Plast Chem 42:628–633
Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF (2004) J Biomed Mater Res Part B 69B:216–222
Kichöfen B, Wokalek H, Scheel D, Ruh H (1986) Biomaterials 7:67–72
Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Biomaterials 32:6335
Cann MC, Roberts K (1996) Plant cell wall architecture: the role of pectins and pectinases. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Elsevier science, Amsterdam, Netherlands, pp 91–107
May CD (1990) Carbohy Poly 12:91
Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) FEBS Lett 32:195
Ashford M, Fell J, Attwood D, Sharma H, Woodhead P (1993) J of Control Rel 26:213
Rubenstein A, Radai R, Ezra M, Pathak S, Rokem JS (1993) Pharm Res 10:258
Radai R, Rubenstein A (1995) Euro J of Pharma and Biopharm 41:291
Warkley Z, Fell JT, Attwood D, Parkins D (1996) Pharm Res 13:1210
Warkley Z, Fell JT, Attwood D, Parkins D (1997) Inter J of Pharm 153:219
Tharanathan RN (2003) Tre food Sci Technol 14:71
Fishman ML, Coffin DR (1998) Carbohy Poly 35:195
Fishman ML, Coffin DR, Ly TV (1996) J of Appl Poly Sci 61:71
Ramachandran GN (1967) Ramakrishnan C. In: Ramachandran GN, Reddi AH (eds) Biochemistry of Collagen. Plenum Press, New York
Brodsky B, Ramshaw JAM (1997) Matrix Biol 15:545
Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y (2000) Biomaterials 21:489
Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K (2002) Biomaterials 23:3227
Ito A, Mase A, Takizawa Y, Shinkai M, Honda H, Hata KI, Ueda M, Kobayashi T (2003) J of Bio & Bioeng 95:196
Chang CH, Liu HC, Lin CC, Chou CH, Lin FH (2003) Biomaterials 24:4853
Neumann PM, Zur B, Ehrenreich Y (1981) J of Biomed Mat Res 15:9
Petersen JK, Krogsgaaed J, Nielson KM, Norgaard EB (1984) Intern J of Oral Surg 13:406
Shinde BG, Erhan S (1992) Biomed Mat & Eng 2:127
Di Silvio L, Guruv N, Kayser MV, Braden M, Downes S (1994) Biomaterials 15:931
Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N (2001) Biomaterials 22:763
Jo C, Kang H, Lee NY, Kwon JH, Byun MW (2005) Rad Phys and Chem 72:745
Anis A, Banthia AK, Bandyopadhyay S (2008) J Power Sour 179:69
ASTM Standard E96–00 (2000) Standard test methods for water vapor transmission of materials. Annual book of ASTM standards, vol. 4.06. ASTM, Philadelphia
Hu Y, Topolkaraeb V, Hiltner A, Baer E (2001) J Appl Polym Sci 81:1624
Bechard S, McMullen JN (1986) Intern J of Pharm 31:91
Hansen MB, Nielsen SE, Berg K (1989) J Immunol Meth 119:203
Xiao CB, Liu HJ, Lu YS, Zhang LN (2001) J Macromol Sci: Pure & Appl Chem 38:317
Mishra RK, Dutt M, Banthia AK (2008) AAPS Pharm SciTech 9:395
Wang YW, Wu Q, Chen GQ (2005) Biomacromol 6:566
Fakirov S, Sarac Z, Anbar T, Boz B, Bahar I, Evstatiev M, Apostolov AA, Mark JE (1996) Kloczkowski A Colloid Polym Sci 274:334
Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N (1998) Biomaterials 19:2335
Vlierberghe SV, Cnudde V, Dubruel P, Masschaele B, Cosijns A, Paepe ID, Jacobs PJS, Hoorebeke LV, Remon JP, Schacht E (2007) Biomacromol 8:331
Hong HJ, Jin SE, Park JS, Ahn WS, Kim CK (2008) Biomaterials 29:4831
Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Biomaterials 26:6335
http://www.burnsurgery.org/Betaweb/Modules/moisthealing/part_2bc.htm
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mishra, R.K., Majeed, A.B.A. & Banthia, A.K. Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plast Technol 15, 82–95 (2011). https://doi.org/10.1007/s12588-011-9016-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12588-011-9016-y