Skip to main content
Log in

ASTER Analysis for Locating REE-Bearing Granites in Arid Regions: Example from the Arabian Shield

  • Petrology, Mineral Deposits and Mineralogy
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The world’s increasing demand for rare earth elements (REEs) highlights the potential for using new multispectral remote sensing techniques to define new exploration targets in arid regions, such as the Kingdom of Saudi Arabia (KSA), Egypt, and regions of central and western China. Although REEs cannot be detected by satellite multispectral instruments, REEs-bearing alkaline granites can be identified on ASTER imagery. Herein, we develop a new ASTER band ratio scheme to delineate mineralization-related features of the Ghurayyah REE-bearing peralkaline granite in the northwestern KSA. The Ghurayyah peralkaline stock is located at the intersection of a NW striking segment of the Najd-fault system, and an E-W striking fault. It is surrounded to the north and west by metavolcanics, from east by the Jabal Dabbagh alkali granite, and from the south by monzogranite. The mineralogical composition of granitic rocks resulted in spectral variation and causes absorption features at different wavelengths in the shortwave infrared (SWIR). The newly developed band ratios were constructed from (b6 + b8)/(b6 − b8) in red; (b6 + b8)/b4 in green, and (b7 − b9)/(b7 + b9) in blue, enabling the discrimination between the Ghurayyah REE-bearing peralkaline granite, Jabal Dabbagh alkali granite, monzogranite, and metavolcanics. Future work will be carried out to perform higher-resolution drone-based hyperspectral imaging for new high-resolution mapping and evaluate the existing REE deposits, emphasizing field spectral measurements to identify the spectral reflectance of REEs mineralized zones and the absorption features of monazite, columbite-tantalite, and aeschynite- (Y), coupled with rock sampling for petrographical, spectral, and geochemical analyses. These methods have great potential for locating REEs-bearing peralkaline granites in the Arabian shield and elsewhere, such as arid portions of central and western China and adjacent regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Amer, R., Kusky, T. M., Ghulam, A., 2010. Lithological Mapping in the Central Eastern Desert of Egypt Using ASTER Data. Journal of African Earth Sciences, 56(2/3):75–82. https://doi.org/10.1016/j.jafrearsci.2009.06.004

    Article  Google Scholar 

  • Amer, R., Kusky, T. M., El Mezayen, A., 2012. Remote Sensing Detection of Gold Related Alteration Zones in Um Rus Area, Central Eastern Desert of Egypt. Advances in Space Research, 49(1):121–134. https://doi.org/10.1016/j.asr.2011.09.024

    Article  Google Scholar 

  • Amer, R., El Mezayen, A., Hasanein, M., 2016. ASTER Spectral Analysis for Alteration Minerals Associated with Gold Mineralization. Ore Geology Reviews, 75:239–251. https://doi.org/10.1016/j.oregeorev.2015.12.008

    Article  Google Scholar 

  • Amer, R., El-Desoky, H., 2017. A Remote Sensing Method for Mapping Sillimanite Mineralization. Journal of African Earth Sciences, 134:373–382. https://doi.org/10.1016/j.jafrearsci.2017.07.008

    Article  Google Scholar 

  • Aseri, A. A., 2020. Rare-metal Alkaline Granite from the Arabian Shield, Saudi Arabia: [Dissertation]. The University of Western Ontario London, Ontario

    Google Scholar 

  • Atwood, D. A., 2012. The Rare Earth Elements: Fundamentals and Applications. Chichester, West Sussex, United Kingdom. John Wiley & Sons, Hoboken

    Google Scholar 

  • Brown, G., Schmidt, D., Huffman, A., 1983. Compiled Geological map of the Kingdom of Saudi Arabia 1963 to 1983. The Ministry of Petroleum and Mineral Resources, Kingdom of Saudi Arabia

    Google Scholar 

  • Clark, R. N., Swayze, G. A., Wise, R., et al., 2007. USGS Digital Spectral Library Splib06a. U.S. Geological Survey, Reston

    Book  Google Scholar 

  • Drysdall, A. R., Jackson, N. J., Ramsay, C. R., et al., 1984. Rare Element Mineralization Related to Precambrian Alkali Granites in the Arabian Shield. Economic Geology, 79(6):1366–1377. https://doi.org/10.2113/gsecongeo.79.6.1366

    Article  Google Scholar 

  • Drysdall, A. R., Douch, C. J., 1986. NBTHZR Mineralization in Microgranite—Microsyenite at Jabal Tawlah, Midyan Region, Kingdom of Saudi Arabia. Journal of African Earth Sciences, 4:275–288. https://doi.org/10.1016/s0899-5362(86)80089-6

    Google Scholar 

  • Elliott, J. E., 1983. Peralkaline and Peraluminous Granites and Related Mineral Deposits of the Arabian Shield, Kingdom of Saudi Arabia. U. S. Geological Survey Open-File Report 83–389

  • Elliott, J. E., Al-Yazidi, S., Al-Eissa, A., et al., 2001. Exploration of the Ghurayyah Radioactive Granite, Kingdom of Saudi Arabia, Saudi Geological Survey, Open-File Report, SGS-OF-2001-7

  • Fan, H. R., Yang, K. F., Hu, F. F., et al., 2016. The Giant Bayan Obo REE−Nb−Fe Deposit, China: Controversy and Ore Genesis. Geoscience Frontiers, 7(3):335–344. https://doi.org/10.1016/j.gsf.2015.11.005

    Article  Google Scholar 

  • Gabr, S., Ghulam, A., Kusky, T. M., 2010. Detecting Areas of High-Potential Gold Mineralization Using ASTER Data. Ore Geology Reviews, 38(1/2):59–69. https://doi.org/10.1016/j.oregeorev.2010.05.007

    Article  Google Scholar 

  • Gad, S., Kusky, T. M., 2007. ASTER Spectral Ratioing for Lithological Mapping in the Arabian-Nubian Shield, the Neoproterozoic Wadi Kid Area, Sinai, Egypt. Gondwana Research, 11(3):326–335. https://doi.org/10.1016/j.gr.2006.02.010

    Article  Google Scholar 

  • Goetz, A. F. H., Strivastava, V., 1985. Mineralogical Mapping in the Cuprite Mining District. In: Proceedings of the Airborne Imaging Spectrometer (AIS) Data Analysis Workshop. Jet Propulsion Laboratory Publication, Pasadena

    Google Scholar 

  • Grasso, V. B., 2011. Rare Earth Elements in National Defense: Background, Oversight Issues, and Options for Congress. Congressional Research Service 7–5700. https://sgp.fas.org/crs/natsec/r41744.pdf

  • Greenwood, W. R., Hadley, D. G., Anderson, R. E., et al., 1976. Late Proterozoic Cratonization in Southwestern Saudi Arabia. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences (1934-1990), 280(1298):517–527. https://doi.org/10.1098/rsta.1976.0010

    Google Scholar 

  • Harris, N. B. W., Marriner, G. F., 1980. Geochemistry and Petrogenesis of a Peralkaline Granite Complex from the Midian Mountains, Saudi Arabia. Lithos, 13(4):325–337. https://doi.org/10.1016/0024-4937(80)90052-3

    Article  Google Scholar 

  • Johnson, P. R., 2006. Explanatory Notes to the Map of Proterozoic Geology of Western Saudi Arabia. Technical Report, Saudi Geological Survey, Jeddah. https://faculty.ksu.edu.sa/sites/default/files/Explanatory%20notes%20for;%20the%20shield%20sgs-tr-2006-4.pdf

    Google Scholar 

  • Kruse, F. A., Lefkoff, A. B., Boardman, J. W., et al., 1993. The Spectral Image Processing System (SIPS) —Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment, 44(2/3):145–163. https://doi.org/10.1016/0034-4257(93)90013-n

    Article  Google Scholar 

  • Kusky, T. M., Matsah, M. I., 2003. Neoproterozoic Dextral Faulting on the Najd Fault System, Saudi Arabia, Preceded Sinistral Faulting and Escape Tectonics Related to Closure of the Mozambique Ocean. Geological Society, London, Special Publications, 206(1):327–361. https://doi.org/10.1144/gsl.sp.2003.206.01.16

    Article  Google Scholar 

  • Kusky, T. M., Ramadan, T. M., 2002. Structural Controls on Neoproterozoic Mineralization in the South Eastern Desert, Egypt: An Integrated Field, Landsat TM, and SIR-C/X SAR Approach. Journal of African Earth Sciences, 35(1):107–121. https://doi.org/10.1016/s0899-5362(02)00029-5

    Article  Google Scholar 

  • Küster, D., 2009. Granitoid-Hosted Ta Mineralization in the Arabian-Nubian Shield: Ore Deposit Types, Tectono-Metallogenetic Setting and Petrogenetic Framework. Ore Geology Reviews, 35(1):68–86. https://doi.org/10.1016/j.oregeorev.2008.09.008

    Article  Google Scholar 

  • Laben, C. A., Brower, B. V., 2000. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. United States Patent, 6(11):875

    Google Scholar 

  • Lalande, P. G., 1977. Final Report on Preliminary Geological and Geophysical Investigation of the Ghurayyah Radioactive Granite, Kingdom of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources, Open-File Report DGMR-605

  • Ling, M. X., Liu, Y. L., Williams, I. S., et al., 2013. Formation of the World’s Largest REE Deposit through Protracted Fluxing of Carbonatite by Subduction-Derived Fluids. Scientific Reports, 3:1776. https://doi.org/10.1038/srep01776

    Article  Google Scholar 

  • Mars, J., Rowan, L., 2006. Regional Mapping of Phyllic- and Argillic-Altered Rocks in the Zagros Magmatic Arc, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data and Logical OperatorAlgorithms. Geosphere, 2:161–186. https://doi.org/10.1130/ges00044.1

    Article  Google Scholar 

  • Melcher, F., Graupner, T., Gäbler, H. E., et al., 2017. Mineralogical and Chemical Evolution of Tantalum- (Niobium-Tin) Mineralisation in Pegmatites and Granites. Part 2: Worldwide Examples (Excluding Africa) and an Overview of Global Metallogenetic Patterns. Ore Geology Reviews, 89:946–987. https://doi.org/10.1016/j.oregeorev.2016.03.014

    Article  Google Scholar 

  • Ninomiya, Y., 2003. A Stabilized Vegetation Index and Several Mineralogic Indices Defined for ASTER VNIR and SWIR Data. In: IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings. July 21–25, 2003, Toulouse. https://doi.org/10.1109/igarss.2003.1294172

  • Perry, S. L., 2004. Spaceborne and Airborne Remote Sensing Systems for Mineral Exploration-Case Histories Using Infrared Spectroscopy. In: King, P. L., Ramsey, M. S., Swayze, G. A., eds., Infrared Spectroscopy in Geochemistry, Exploration Geochemistry, and Remote Sensing. Mineralogic Association of Canada, London, Canada, 227–240

  • Pour, A. B., Hashim, M., 2011. Spectral Transformation of ASTER Data and the Discrimination of Hydrothermal Alteration Minerals in a Semi-Arid Region, SE Iran. International Journal of Physical Sciences, 6(8):2037–2059

    Google Scholar 

  • Pour, A. B., Hashim, M., 2012. The Application of ASTER Remote Sensing Data to Porphyry Copper and Epithermal Gold Deposits. Ore Geology Reviews, 44:1–9. https://doi.org/10.1016/j.oregeorev.2011.09.009

    Article  Google Scholar 

  • Ramsay, C. R., Odell, J., Drysdall, A. R., 1986. Felsic Plutonic Rocks of the Midyan Region, Kingdom of Saudi Arabia—II. Pilot Study in Chemical Classification of Arabian Granitoids. Journal of African Earth Sciences, 4:79–85. https://doi.org/10.1016/S0899-5362(86)80069-0

    Google Scholar 

  • Robinson, F. A., Bonin, B., Pease, V., et al., 2017. A Discussion on the Tectonic Implications of Ediacaran Late- to Post-Orogenic A-Type Granite in the Northeastern Arabian Shield, Saudi Arabia. Tectonics, 36(3):582–600. https://doi.org/10.1002/2016tc004320

    Article  Google Scholar 

  • Roskill Information Services, 2016. Rare Earths: Global Industry, Markets and Outlook. Roskill Information Services, London

    Google Scholar 

  • Rowan, L. C., Mars, J. C., 2003. Lithologic Mapping in the Mountain Pass, California Area Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data. Remote Sensing of Environment, 84(3):350–366. https://doi.org/10.1016/s0034-4257(02)00127-x

    Article  Google Scholar 

  • Rowan, L. C., Goetz, A. F. H., Ashley, R. P., 1977. Discrimination of Hydrothermally Altered and Unaltered Rocks in Visible and near Infrared Multispectral Images. Geophysics, 42(3):522–535. https://doi.org/10.1190/1.1440723

    Article  Google Scholar 

  • Rowan, L. C., Hook, S. J., Abrams, M. J., et al., 2003. Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System. Economic Geology, 98(5):1019–1027. https://doi.org/10.2113/gsecongeo.98.5.1019

    Article  Google Scholar 

  • Stoeser, D. B., Elliott, J. E., 1980. Post-Orogenic Peralkaline and Calc-Alkaline Granites and Associated Mineralization of the Arabian Shield, Kingdom of Saudi Arabia. Evolution and Mineralization of the Arabian-Nubian Shield. Elsevier, Amsterdam. 1–23. https://doi.org/10.1016/b978-0-08-024481-5.50006-6

    Google Scholar 

  • Sultan, M., Arvidson, R. E., Sturchio, N. C., 1986. Mapping of Serpentinites in the Eastern Desert of Egypt by Using Landsat Thematic Mapper Data. Geology, 14(12):995. https://doi.org/10.1130/0091-7613(1986)14995:mosite>2.0.co;2

    Article  Google Scholar 

  • Watts, D. R., Harris, N. B. W., 2005. The NASA Glenn Soars Working Group, 2005. Mapping Granite and Gneiss in Domes along the North Himalayan Antiform with ASTER SWIR Band Ratios. Geological Society of America Bulletin, 117(7):879. https://doi.org/10.1130/b25592.1

    Article  Google Scholar 

  • Zhang, X. F., Pazner, M., Duke, N., 2007. Lithologic and Mineral Information Extraction for Gold Exploration Using ASTER Data in the South Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing, 62(4):271–282. https://doi.org/10.1016/j.isprsjprs.2007.04.004

    Article  Google Scholar 

  • Zhou, Q. F., Qin, K. Z., Tang, D. M., 2021. Mineralogy of Columbite-Group Minerals from the Rare-Element Pegmatite Dykes in the East-Qinling Orogen, Central China: Implications for Formation Times and Ore Genesis. Journal of Asian Earth Sciences, 218:104879. https://doi.org/10.1016/j.jseaes.2021.104879

    Article  Google Scholar 

Download references

Acknowledgments

Timothy M. Kusky acknowledges support from the National Natural Science Foundation of China (Nos. 41888101, 91755213, 41961144020), the Chinese Ministry of Education (No. BP0719022), the MOST Special Fund (No. MSF-GPMR02-3), and the Open Fund (No. GPMR201704) of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), and the Fundamental Research Fund (No. CUGL180406) from the China University of Geosciences, Wuhan. Web Resources from Natural Resources Canada: www.nrcan.gc.ca; KSA Vision 2030: https://vision2030.gov.sa; ENVI Software: https://www.harrisgeospatial.com. The final publication is available at Springer via https://doi.org/10.1007/s12583-022-1650-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Kusky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, R., Kusky, T.M. ASTER Analysis for Locating REE-Bearing Granites in Arid Regions: Example from the Arabian Shield. J. Earth Sci. 33, 1114–1123 (2022). https://doi.org/10.1007/s12583-022-1650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-022-1650-0

Key Words

Navigation