Skip to main content
Log in

Porosity and Pore Networks in Tight Dolostone—Mudstone Reservoirs: Insights from the Devonian Three Forks Formation, Williston Basin, USA

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

This study was performed to evaluate pore systems of reservoir lithofacies within the Devonian Three Forks Formation in the Williston Basin through micro-scale pore characterization. These lithofacies are from the Upper Three Forks section, which is a prominent drilling target within the Bakken-Three Forks Petroleum System. Samples from the Formation were examined by (1) physical core description, (2) petrographic thin section microscopy, (3) x-ray diffractometry (XRD) minerals analysis, (4) scanning electron microscopy (SEM), and (5) porosity measurements from helium porosimetry, nuclear magnetic resonance (NMR), gas adsorption and mercury intrusion porosimetry (MIP). These were done to provide better understanding of the local variations in pore structures and how such structures impact reservoir quality within the Three Forks Formation. Seven reservoir lithofacies were identified and described, including laminated lithofacies, massive dolostone, mottled dolostone, massive mudstone, mottled mudstone, mudstone conglomerates, and brecciated mudstone. Samples show a diverse variation in mineralogical composition, pore types, porosity, and pore-size distribution. Six types of pores were identified: interparticle, intercrystalline, intracrystalline, vuggy, microfractures, and mudstone microporosity. Dolostone-rich lithofacies have abundant dolomite and less siliciclastic minerals such as quartz, feldspar, and clays. They also have relatively low porosity and generally larger pore size. A general positive trend exists between porosity with clay minerals and feldspar, in contrast to a negative trend with dolomite, and no clear relationship with quartz content. Results from the gas adsorption analysis, NMR and MIP pore-size distribution confirm an abundance of macropores (>50 nm in diameters) in dolostone dominated lithofacies while other lithofacies generally have abundant mesopores (2–50 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Adeyilola, A., Nordeng, S., Onwumelu, C., et al., 2020. Geochemical, Petrographic and Petrophysical Characterization of the Lower Bakken Shale, Divide County, North Dakota. International Journal of Coal Geology, 224(2): 103477. https://doi.org/10.1016/jxoal.2020.103477

    Article  Google Scholar 

  • Akai, T., Wood, J. M., 2018. Application of Pore Throat Size Distribution Data to Petrophysical Characterization of Montney Tight-Gas Siltstones. Bulletin of Canadian Petroleum Geology, 66(2): 425–435

    Google Scholar 

  • Baah, D., 2015. Nano-Petrophysics of the Three Forks Formation in Williston Basin, North Dakota: [Dissertation]. University of Texas, Arlington

    Google Scholar 

  • Basan, P. B., Lowden, B. D., Whattler, P. R., et al., 1997. Pore-Size Data in Petrophysics: A Perspective on the Measurement of Pore Geometry. Geological Society, London, Special Publications, 122(1): 47–67. https://doi.org/10.1144/gsl.sp.1997.122.01.05

    Article  Google Scholar 

  • Bazzell, A., 2014. Origin of Brecciated Intervals and Petrophysical Analyses, the Three Forks Formation, Williston Basin, North Dakota, USA: [Dissertation]. Colorado School of Mines, Golden. 140

    Google Scholar 

  • Bernard, S., Wirth, R., Schreiber, A., et al., 2012. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103(20): 3–11. https://doi.org/10.1016/j.coal.2012.04.010

    Article  Google Scholar 

  • Berwick, B., 2008. Depositional Environment, Mineralogy, and Sequence Stratigraphy of the Late Devonian Sanish Member (Upper Three Forks Formation), Williston Basin, North Dakota: [Dissertation]. Colorado School of Mines, Golden

    Google Scholar 

  • Bjørlykke, K., Jahren, J., 2012. Open or Closed Geochemical Systems during Diagenesis in Sedimentary Basins: Constraints on Mass Transfer during Diagenesis and the Prediction of Porosity in Sandstone and Carbonate Reservoirs. AAPG Bulletin, 96(12): 2193–2214. https://doi.org/10.1306/04301211139

    Article  Google Scholar 

  • Bottjer, R. J., Sterling, R., Grau, A., et al., 2011. Stratigraphic Relationships and Reservoir Quality at the Three Forks-Bakken Unconformity, Williston Basin, North Dakota. In: Robinson, J. W., LeFever, J. A., Gaswirth, S. B., eds. The Bakken-Three Forks Petroleum System in the Williston Basin. Rocky Mountain Association of Geologists, Denver

    Google Scholar 

  • Carvajal-Ortiz, H., Gentzis, T., Xie, H., 2019. High-frequency (20 MHz) NMR and Modified Rock-Eval Pyrolysis Methods as an Integrated Approach to Examine Producibility in Kerogen-Rich Source-Reservoirs. In: Unconventional Resources Technology Conference, Denver, Colorado, 22–24 July 2019 (1861–1877). Unconventional Resources Technology Conference (URTeC); Society of Exploration Geophysicists

  • Chalmers, G. R. L., Bustin, R. M., 2007b. The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1/2/3): 223–239. https://doi.org/10.1016/j.coal.2006.05.001

    Article  Google Scholar 

  • Chalmers, G. R. L., Marc Bustin, R., 2007a. On the Effects of Petrographic Composition on Coalbed Methane Sorption. International Journal of Coal Geology, 69(4): 288–304. https://doi.org/10.1016/j.coal.2006.06.002

    Article  Google Scholar 

  • Chalmers, G. R. L., Ross, D. J. K., Bustin, R. M., 2012b. Geological Controls on Matrix Permeability of Devonian Gas Shales in the Horn River and Liard Basins, Northeastern British Columbia, Canada. International Journal of Coal Geology, 103(6): 120–131. https://doi.org/10.1016/j.coal.2012.05.006

    Article  Google Scholar 

  • Chalmers, G. R., Bustin, R. M., Power, I. M., 2012a. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099–1119. https://doi.org/10.1306/10171111052

    Article  Google Scholar 

  • Choquette, P. W., Cox, A., Meyers, W. J., 1992. Characteristics, Sistribution and Origin of Porosity in Shelf Solostones; Burlington-Keokuk Formation (Mississippian), US Mid-Continent. Journal of Sedimentary Research, 62(2): 167–189

    Google Scholar 

  • Choquette, P. W., Pray, L. C., 1970. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54: 207–250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865d

    Google Scholar 

  • Christopher, J. E., 1961. Transitional Devonian-Mississippian Formations of Southern Saskatchewan. Saskatchewan Department of Mineral Resources, Saskatoon

    Google Scholar 

  • Clark, A. J., 2009. Determination of Recovery Factor in the Bakken Formation, Mountrail County, ND. SPE Annual Technical Conference and Exhibition, New Orleans, October 4–7, 2009. https://doi.org/10.2118/133719-stu

  • Clarkson, C. R., Haghshenas, B., Ghanizadeh, A., et al., 2016. Nanopores to Megafractures: Current Challenges and Methods for Shale Gas Reservoir and Hydraulic Fracture Characterization. Journal of Natural Gas Science and Engineering, 31: 612–657. https://doi.org/10.1016/j.jngse.2016.01.041

    Article  Google Scholar 

  • Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103: 606–616. https://doi.org/10.1016/j.fuel.2012.06.119

    Article  Google Scholar 

  • Coates, G. R., Xiao, L. Z., Prammer, M. G., 1999. NMR Logging Principles and Applications, Halliburton Energy Services Publication. Colorado School of Mines, Golden

    Google Scholar 

  • Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26–31. https://doi.org/10.1016/j.coal.2012.08.004

    Article  Google Scholar 

  • Dechongkit, P., Prasad, M., 2011. Recovery Factor and Reserves Estimation in the Bakken Petroleum System (Analysis of the Antelope, Sanish and Parshall Fields). Presented at the SPE Canadian Unconventional Resources Conference, Calgary. https://doi.org/10.2118/149471-ms

  • Deng, H. C., Hu, X. F., Li, H. A., et al., 2016. Improved Pore-Structure Characterization in Shale Formations with FESEM Technique. Journal of Natural Gas Science and Engineering, 35(1): 309–319. https://doi.org/10.1016/j.jngse.2016.08.063

    Article  Google Scholar 

  • Dow, W. G., 1974. Application of Oil Correlation and Source-Rock Data to Exploration in Williston Basin: Abstract. AAPG Bulletin, 58: 1253–1262. https://doi.org/10.1306/819a3f00-16c5-11d7-8645000102c1865d

    Google Scholar 

  • Du, Y., Fan, T. L., Machel, H. G., et al., 2018. Genesis of Upper Cambrian-Lower Ordovician Dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several Limitations from Petrology, Geochemistry, and Fluid Inclusions. Marine and Petroleum Geology, 91(2): 43–70. https://doi.org/10.1016/j.marpetgeo.2017.12.023

    Article  Google Scholar 

  • Dumonceaux, G. M., 1984. Stratigraphy and Depositional Environments of the Three Forks Formation (Upper Devonian), Williston Basin, North Dakota: [Dissertation]. University of North Dakota, Fargo

    Google Scholar 

  • Dunn, K. J., Bergman, D. J., LaTorraca, G. A., 2002. Nuclear Magnetic Resonance: Petrophysical and Llogging Applications, Handbook of Geophysical Exploration. Pergamon, New York

    Google Scholar 

  • Franklin, A., Sarg, J. F., 2017. Sedimentology and Ichnofacies, Uppermost Three Forks Formation (Fammenian), Williston Basin, North Dakota and Montana—A Storm Dominated Intrashelf Basin. The Sedimentary Record, 15(2): 4–12. https://doi.org/10.2110/sedred.2017.2.4

    Article  Google Scholar 

  • Gantyno, A. A., 2011. Sequence Stratigraphy and Microfacies Analysis of the Late Devonian Three Forks Formation, Williston Basin, North Dakota and Montana, U. S. A.: [Dissertation]. Colorado School of Mines, Golden, Colorado

    Google Scholar 

  • Gao, F. L., Song, Y., Li, Z., et al., 2018. Lithofacies and Reservoir Characteristics of the Lower Cretaceous Continental Shahezi Shale in the Changling Fault Depression of Songliao Basin, NE China. Marine and Petroleum Geology, 98(4): 401–421. https://doi.org/10.1016/j.marpetgeo.2018.08.035

    Article  Google Scholar 

  • Gao, H., Li, H. Z., 2015. Determination of Movable Fluid Percentage and Movable Fluid Porosity in Ultra-Low Permeability Sandstone Using Nuclear Magnetic Resonance (NMR) Technique. Journal of Petroleum Science and Engineering, 133(3): 258–267. https://doi.org/10.1016/j.petrol.2015.06.017

    Article  Google Scholar 

  • Gao, Z. Y., Hu, Q. H., 2013. Estimating Permeability Using Median Pore-Throat Radius Obtained from Mercury Intrusion Porosimetry. Journal of Geophysics and Engineering, 10(2): 025014. https://doi.org/10.1088/1742-2132/10/2/025014

    Article  Google Scholar 

  • Garcia-Fresca, B., Pinkston, D., Loucks, R. G., et al., 2018. The Three Forks Playa Lake Depositional Model: Implications for Characterization and Development of an Unconventional Carbonate Play. AAPG Bulletin, 102(8): 1455–1488. https://doi.org/10.1306/12081716510

    Article  Google Scholar 

  • Gharechelou, S., Daraei, M., Amini, A., 2016. Pore Types Distribution and their Reservoir Properties in the Sequence Stratigraphic Framework: A Case Study from the Oligo-Miocene Asmari Formation, SW Iran. Arabian Journal of Geosciences, 9(3): 194. https://doi.org/10.1007/s12517-015-2141-8

    Article  Google Scholar 

  • Chalmers, G., Bustin, R. M., Power, I. M., 2009. A Pore by any Other Name would be as Small: the Importance of Meso- and Microporosity in Shale Gas Capacity. AAPG Datapages, Search and Discovery Article 90090. AAPG Annual Convention and Exhibition, Denver, Colorado, June 7–10, 2009 URL. http://www.searchanddiscovery.com/abstracts/html/2009/annual/abstracts/chalmers.html (last accessed on 16/02/2014)

  • Droege, L. A., 2014. Sedimentology, Facies Architecture, and Diagenesis of the Middle Three Forks Formation—North Dakota, USA: [Dissertation], Colorado State University, Fort Collins

    Google Scholar 

  • Gherabati, S. A., Hamlin, H. S., Smye, K. M., et al., 2019. Evaluating Hydrocarbon-in-Place and Recovery Factor in a Hybrid Petroleum System: Case of Bakken and Three Forks in North Dakota. Interpretation, 7(3): T607–T624

    Article  Google Scholar 

  • Handy, L. L., 1960. Determination of Effective Capillary Pressures for Porous Media from Imbibition Data. Transactions of the AIME, 219(1): 75–80. https://doi.org/10.2118/1361-g

    Article  Google Scholar 

  • Hinai, A. A., Rezaee, R., Esteban, L., et al., 2014. Comparisons of Pore Size Distribution: A Case from the Western Australian Gas Shale Formations. Journal of Unconventional Oil and Gas Resources, 8: 1–13. https://doi.org/10.1016/j.juogr.2014.06.002

    Article  Google Scholar 

  • Hu, J. G., Tang, S. H., Zhang, S. H., 2016. Investigation of Pore Structure and Fractal Characteristics of the Lower Silurian Longmaxi Shales in Western Hunan and Hubei Provinces in China. Journal of Natural Gas Science and Engineering, 28(1): 522–535. https://doi.org/10.1016/j.jngse.2015.12.024

    Article  Google Scholar 

  • Hu, Q. H., Zhang, Y. X., Meng, X. H., et al., 2017. Characterization of Micro-Nano Pore Networks in Shale Oil Reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China. Petroleum Exploration and Development, 44(5): 720–730. https://doi.org/10.1016/s1876-3804(17)30083-6

    Article  Google Scholar 

  • Hu, Q. H., 2018. Quantifying Effective Porosity of Oil and Gas Reservoirs. In: 2018 International Conference and Exhibition, Cape Town, November 4–7. https://doi.org/10.1306/70376hu2018

  • Islam, M. A., 2009. Diagenesis and Reservoir Quality of Bhuban Sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences, 35(1): 89–100. https://doi.org/10.1016/j.jseaes.2009.01.006

    Article  Google Scholar 

  • James, N. P., Jones, B., 2015. Origin of Carbonate Sedimentary Rocks. John Wiley and Sons, Chichester

    Google Scholar 

  • Jiang, F., Chen, D., Chen, J., et al., 2016a. Fractal Analysis of Shale Pore Structure of Continental Gas Shale Reservoir in the Ordos Basin, NW China. Energy & Fuels, 30(6): 4676–4689. https://doi.org/10.1021/acs.energyfuels.6b00574

    Article  Google Scholar 

  • Jiang, F., Chen, D., Wang, Z., et al., 2016b. Pore Characteristic Analysis of a Lacustrine Shale: A Case Study in the Ordos Basin, NW China. Marine and Petroleum Geology, 73: 554–571. https://doi.org/10.1016/j.marpetgeo.2016.03.026

    Article  Google Scholar 

  • Kenyon, W. E., 1992. Nuclear Magnetic Resonance as a Petrophysical Measurement. Nuclear Geophysics, 6(2): 153–171

    Google Scholar 

  • Kenyon, W. E., 1997. Petrophysical Principles of Applications of NMR Logging. The Log Analyst, 38(02): SPWLA-1997-v38n2a4

    Google Scholar 

  • Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158: 78–89. https://doi.org/10.1016/j.coal.2016.03.003

    Article  Google Scholar 

  • Kleinberg, R. L., 1996. Utility of NMR T2 Distributions, Connection with Capillary Pressure, Clay Effect, and Determination of the Surface Relaxivity Parameter P2. Magnetic Resonance Imaging, 14(7/8): 761–767. https://doi.org/10.1016/s0730-725x(96)00161-0

    Article  Google Scholar 

  • Kleinberg, R. L., Farooqui, S. A., Horsfield, M. A., 1993. T1/T2 Ratio and Frequency Dependence of NMR Relaxation in Porous Sedimentary Rocks. Journal of Colloid and Interface Science, 158(1): 195–198. https://doi.org/10.1006/jcis.1993.1247

    Article  Google Scholar 

  • Ko, L. T., Loucks, R. G., Milliken, K. L., et al., 2017a. Controls on Pore Types and Pore-Size Distribution in the Upper Triassic Yanchang Formation, Ordos Basin, China: Implications for Pore-Evolution Models of Lacustrine Mudrocks. Interpretation, 5(2): SF127–SF148. https://doi.org/10.1190/int-2016-0115.1

    Article  Google Scholar 

  • Ko, L. T., Loucks, R. G., Ruppel, S. C., et al., 2017b. Origin and Characterization of Eagle Ford Pore Networks in the South Texas Upper Cretaceous Shelf. AAPG Bulletin, 101(3): 387–418. https://doi.org/10.1306/08051616035

    Article  Google Scholar 

  • Kuila, U., Prasad, M., 2013. Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophysical Prospecting, 61(2): 341–362. https://doi.org/10.1111/1365-2478.12028

    Article  Google Scholar 

  • Kulke, H., 1995. Nigeria. In: Kulke, H., ed., Regional Petroleum Geology of the World. Part II: Africa, America, Australia and Antarctica. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Lai, J., Wang, S., Zhang, C. S., et al., 2020. Spectrum of Pore Types and Networks in the Deep Cambrian to Lower Ordovician Dolostones in Tarim Basin, China. Marine and Petroleum Geology, 112(1): 104081. https://doi.org/10.1016/j.marpetgeo.2019.104081

    Article  Google Scholar 

  • Lang, D. J., Shang, G. H., Lü, C. Y., et al., 2009. Experiment and Application of NMR in Carbonate Reservoir Analysis: An Example from Tahe Oilfield. Oil and Gas Geology, 30(3): 363–369 (In Chinese with English Abstract)

    Google Scholar 

  • Lawal, L. O., Adebayo, A. R., Mahmoud, M., et al., 2020. A Novel NMR Surface Relaxivity Measurements on Rock Cuttings for Conventional and Unconventional Reservoirs. International Journal of Coal Geology, 231: 103605. https://doi.org/10.1016/j.coal.2020.103605

    Article  Google Scholar 

  • LeFever, J. A., Nordeng, S. H., 2008. Three Forks Formation. North Dakota. Geological Survey Newsletter, 35(2): 4–5

    Google Scholar 

  • LeFever, J. A., Martiniuk, C. D., Dancsok, E. F., et al., 1991. Petroleum Potential of the Middle Member, Bakken Formation, Williston Basin. Sixth International Williston Basin Symposium. AAPG Datapages, Inc. Tulsa

    Google Scholar 

  • LeFever, J. A., LeFever, R. D., Nordeng, S. H., 2013. Role of Nomenclature in Pay Zone Definitions—Three Forks Formation, North Dakota. North Dakota Geological Survey Geologic Investigations, Bismarck

    Google Scholar 

  • Lewis, R., Singer, P., Jiang, T., et al., 2013. NMR T2 Distributions in the Eagle Ford Shale: Reflections on Pore Size. In: SPE Unconventional Resources Conference-USA. Woodlands, April 10–12, 2013

  • Li, Q., Jiang, Z. X., Hu, W. X., et al., 2016. Origin of Dolomites in the Lower Cambrian Xiaoerbulak Formation in the Tarim Basin, NW China: Implications for Porosity Development. Journal of Asian Earth Sciences, 115: 557–570. https://doi.org/10.1016/j.jseaes.2015.10.022

    Article  Google Scholar 

  • Lønøy, A., 2006. Making Sense of Carbonate Pore Systems. AAPG Bulletin, 90(9): 1381–1405. https://doi.org/10.1306/03130605104

    Article  Google Scholar 

  • Loucks, R. G., Handford, C. R., 1992. Origin and Recognition of Fractures, Breccias, and Sediment Fills in Paleocave-Reservoir Networks. In: Candelaria, M. P., Reed, C. L., eds., Paleokarst, Karst Related Diagenesis and Reservoir Development: Examples from Ordovician-Devonian Age Strata of West Texas and the Mid-Continent. Permian Basin Section-SEPM Publ 92–33, Midland

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. https://doi.org/10.2110/jsr.2009.092

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., 2014. Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic-Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrock. Gulf Coast Assoc. Geol. Soc. J., 3: 51–60

    Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res., 79: 848–861

    Article  Google Scholar 

  • Loucks, R. G., Ruppel, S. C., Wang, X., et al., 2017. Pore Types, Pore-Network Analysis, and Pore Quantification of the Lacustrine Shale-Hydrocarbon System in the Late Triassic Yanchang Formation in the Southeastern Ordos Basin, China. Interpretation, 5(2): SF63–SF79

    Article  Google Scholar 

  • Lucia, F. J., 1983. Petrophysical Parameters Estimated from Visual Descriptions of Carbonate Rocks: A Field Classification of Carbonate Pore Space. Journal of Petroleum Technology, 35(3): 629–637. https://doi.org/10.2118/10073-pa

    Article  Google Scholar 

  • Lucia, F. J., 1970. Lower Paleozoic History of the Western Diablo Platform of West Texas and South-Central Mexico. In: Seewald, K., Sundeen, D., eds., the Geologic Framework of the Chihuahua Tectonic. West Texas Geol. Soc., Midland

    Google Scholar 

  • Lucia, F. J., 1995. Rock-Fabric/Petrophysical Classification of Carbonate Pore Space for Reservoir Characterization. AAPG Bulletin, 79: 1275–1300. https://doi.org/10.1306/7834d4a4-1721-11d7-8645000102c1865d

    Google Scholar 

  • Ma, B. Y., Hu, Q. H., Yang, S. Y., et al., 2020. Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China. Geofluids, 1: 1–13. https://doi.org/10.1155/2020/8856620

    Google Scholar 

  • Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale Across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621–1643. https://doi.org/10.1306/04011312194

    Article  Google Scholar 

  • Meissner, F. F., 1991. Petroleum Geology of the Bakken Formation Williston Basin, North Dakota and Montana. In: Demaison, G., Murris, R. J., American Association of Petroleum Geologists, Tulsa

  • Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177–200. https://doi.org/10.1306/07231212048

    Article  Google Scholar 

  • Moore, C. H., Heydari, E., 1993. Burial Diagenesis and Hydrocarbon Migration in Platform Limestones: A Conceptual Model Based on the Upper Jurassic of the Gulf Coast of the USA. AAPG Bull., 77: 213–229

    Google Scholar 

  • Moore, C. H., Druckman, Y., 1981. Burial Diagenesis and Porosity Evolution, Upper Jurassic Smackover, Arkansas and Louisiana. AAPG Bulletin, 65(4): 597–628. https://doi.org/10.1306/2f919995-16ce-11d7-8645000102c1865d

    Google Scholar 

  • Murphy, E. C., Nordeng, S. H., Junker, B. J., et al., 2009. North Dakota Stratigraphic Column. North Dakota Geological Survey, Bismarck Nesheim, T. O., 2019. Examination of Downward Hydrocarbon Charge within the Bakken-Three Forks Petroleum System-Williston Basin, North America. Marine and Petroleum Geology, 104(3): 346–360. https://doi.org/10.1016/j.marpetgeo.2019.03.016

    Google Scholar 

  • Norbisrath, J. H., Eberli, G. P., Laurich, B., et al., 2015. Electrical and Fluid Flow Properties of Carbonate Microporosity Types from Multiscale Digital Image Analysis and Mercury Injection. AAPG Bulletin, 99(11): 2077–2098. https://doi.org/10.1306/07061514205

    Article  Google Scholar 

  • Nordeng, S. H., LeFever, J. A., 2009. Three Forks Formation Log to Core Correlation. North Dakota Geological Survey Geologic Investigation, Bismarck

    Google Scholar 

  • Nordeng, S. H., 2009. The Bakken Petroleum System: An Example of a Continuous Petroleum Accumulation. DMR Newsletter, 36(1): 21–24

    Google Scholar 

  • Pires, L. O., Winter, A., Trevisan, O. V., 2019. Dolomite Cores Evaluated by NMR. Journal of Petroleum Science and Engineering, 176(1–4): 1187–1197. https://doi.org/10.1016/j.petrol.2018.06.026

    Article  Google Scholar 

  • Rezaee, R., Saeedi, A., Clennell, B., 2012. Tight Gas Sands Permeability Estimation from Mercury Injection Capillary Pressure and Nuclear Magnetic Resonance Data. Journal of Petroleum Science and Engineering, 88/89(4): 92–99. https://doi.org/10.1016/j.petrol.2011.12.014

    Article  Google Scholar 

  • Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian — Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87–125. https://doi.org/10.1306/09040707048

    Article  Google Scholar 

  • Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916–927. https://doi.org/10.1016/j.marpetgeo.2008.06.004

    Article  Google Scholar 

  • Roth, S., Biswal, B., Afshar, G., et al., 2011. Continuum-Based Rock Model of a Reservoir Dolostone with Four Orders of Magnitude in Pore Sizes. AAPG Bulletin, 95(6): 925–940. https://doi.org/10.1306/12031010092

    Article  Google Scholar 

  • Rouquerol, J., Avnir, D., Fairbridge, C. W., et al., 1994. Recommendations for the Characterization of Porous Solids (Technical Report). Pure and Applied Chemistry, 66(8): 1739–1758. https://doi.org/10.1351/pac199466081739

    Article  Google Scholar 

  • Saller, A. H., Budd, D. A., Harris, P. M., 1994. Unconformities and Porosity Development in Carbonate Strata: Ideas from a Hedberg Conference. AAPG Bulletin, 78(6): 857–872. https://doi.org/10.1306/a25fe3c9-171b-11d7-8645000102c1865d

    Google Scholar 

  • Sandberg C. A., Hammond, C. R., 1958. Devonian System in Williston Basin and Central Montana. AAPG Bulletin, 42: 2293–2335. https://doi.org/10.1306/0bda5bd0-16bd-11d7-8645000102c1865d

    Google Scholar 

  • Sonnenberg, S. A., 2017. Sequence Stratigraphy of the Bakken and Three Forks Formations, Williston Basin, USA. In: AAPG Rocky Mountain Section Annual Meeting, Billings, June 25–28

  • Sonnenberg, S. A., Gantyno, A., Sarg, R., 2011. Petroleum Potential of the Upper Three Forks Formation, Williston Basin, USA. AAPG Annual Convention and Exhibition, Houston, April 10–13

    Google Scholar 

  • Topór, T., Derkowski, A., Ziemiański, P., et al., 2017. The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in the Baltic Basin (Poland) Shale-Gas Reservoir. International Journal of Coal Geology, 180(32): 46–56. https://doi.org/10.1016/j.coal.2017.07.005

    Article  Google Scholar 

  • Wang, G. W., Li, P. P., Hao, F., et al., 2015. Dolomitization Process and Its Implications for Porosity Development in Dolostones: A Case Study from the Lower Triassic Feixianguan Formation, Jiannan Area, Eastern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 131: 184–199. https://doi.org/10.1016/j.petrol.2015.04.011

    Article  Google Scholar 

  • Wang, S., Javadpour, F., Feng, Q. H., 2016. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Scientific Reports, 6: 20160. https://doi.org/10.1038/srep20160

    Article  Google Scholar 

  • Wang, X., Jiang, Z., Jiang, S., et al., 2019. Full-Scale Pore Structure and Fractal Dimension of the Longmaxi Shale from the Southern Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Mercury Intrusion Porosimetry. Minerals, 9(9): 543. https://doi.org/10.3390/min9090543

    Article  Google Scholar 

  • Wardlaw, N. C., 1976. Pore Geometry of Carbonate Rocks as Revealed by Pore Casts and Capillary Pressure. AAPG Bulletin, 60(2): 245–257. https://doi.org/10.1306/83d922ad-16c7-11d7-8645000102c1865d

    Google Scholar 

  • Wardlaw, N. C., Taylor, R. P., 1976. Mercury Capillary Pressure Curves and the Interpretation of Pore Structure and Capillary Behaviour in Reservoir Rocks. Bulletin of Canadian Petroleum Geology, 24(2): 225–262

    Google Scholar 

  • Washburn, E. W., 1921. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proceedings of the National Academy of Sciences, 7(4): 115–116. https://doi.org/10.1073/pnas.7.4.115

    Article  Google Scholar 

  • Washburn, K. E., Birdwell, J. E., 2013. Updated Methodology for Nuclear Magnetic Resonance Characterization of Shales. Journal of Magnetic Resonance, 233: 17–28. https://doi.org/10.1016/j.jmr.2013.04.014

    Article  Google Scholar 

  • Woody, R. E., Gregg, J. M., Koederitz, L. F., 1996. Effect of Texture on Petrophysical Properties of Dolomite: Evidence from the Cambrian-Ordovician of Southeastern Missouri. AAPG Bulletin, 80(1): 119–131. https://doi.org/10.1306/64ed8764-1724-11d7-8645000102c1865d

    Google Scholar 

  • Xie, Z. H., Gan, Z., 2018. Value of 20 Mhz NMR Core Analysis for Unconventional Mudstones. In: SPWLA 59th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, London

    Google Scholar 

  • Xiong, J., Liu, X. J., Liang, L. X., 2015. Experimental Study on the Pore Structure Characteristics of the Upper Ordovician Wufeng Formation Shale in the Southwest Portion of the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 22(1): 530–539. https://doi.org/10.1016/j.jngse.2015.01.004

    Article  Google Scholar 

  • Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27–45. https://doi.org/10.1016/j.marpetgeo.2015.11.019

    Article  Google Scholar 

  • Yuan, Y. J., Rezaee, R., 2019. Comparative Porosity and Pore Structure Assessment in Shales: Measurement Techniques, Influencing Factors and Implications for Reservoir Characterization. Energies, 12(11): 2094. https://doi.org/10.3390/en12112094

    Article  Google Scholar 

  • Zargari, S., Canter, K. L., Prasad, M., 2015. Porosity Evolution in Oil-Prone Source Rocks. Fuel, 153(6): 110–117. https://doi.org/10.1016/j.fuel.2015.02.072

    Article  Google Scholar 

  • Zhang, J. Z., Li, X. Q., Xie, Z. Y., et al., 2018. Characterization of Microscopic Pore Types and Structures in Marine Shale: Examples from the Upper Permian Dalong Formation, Northern Sichuan Basin, South China. Journal of Natural Gas Science and Engineering, 59(3): 326–342. https://doi.org/10.1016/j.jngse.2018.09.012

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Natalia Zakharova of the Earth and Atmospheric Science Department at Central Michigan University for her support in the use of Micrometrics Tristar gas adsorption equipment. The authors also appreciate the efforts of Messrs. Jeff Bader and Tim Nesheim of the North Dakota Department of Mineral Resources (DMR)-Geological Survey for granting access to the core facilities and their pre-submission reviews on the manuscript. The final publication is available at-Springer via https://doi.org/10.1007/s12583-021-1458-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adedoyin Adeyilola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeyilola, A., Nordeng, S. & Hu, Q. Porosity and Pore Networks in Tight Dolostone—Mudstone Reservoirs: Insights from the Devonian Three Forks Formation, Williston Basin, USA. J. Earth Sci. 33, 462–481 (2022). https://doi.org/10.1007/s12583-021-1458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-021-1458-3

Key Words

Navigation