Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of Earth Science
  3. Article

Karst Types and Their Karstification

  • Structural Geology and Geomorphology
  • Open access
  • Published: 15 June 2020
  • Volume 31, pages 621–634, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of Earth Science Aims and scope Submit manuscript
Karst Types and Their Karstification
Download PDF
  • Márton Veress  ORCID: orcid.org/0000-0003-4718-42251 
  • 5875 Accesses

  • 35 Citations

  • 5 Altmetric

  • Explore all metrics

Abstract

Eighty-one karst types and their main characteristics are described in this study, including the conditions of their development, the main characteristics of their karstification and their characteristic features. The classification includes the karst types of the Earth, a concise description of each karst type and the possibilities of belonging to several types of various karst areas. The classification of types is hierarchical in terms of groups, subgroups, types and subtypes. Karst can be classified according to their momentary state (the group of static karst types) and to their development (group of dynamic karst types). The group of static karst types has the azonal and zonal subgroups. zonal karst types may be situated under any climate. These karst types are categorized according to their geological characteristics (age of karstification, constituting rock, extent of coveredness, structure), their elevation, expansion, the morphology of their surface, hydrology and to the effects occurring on the karst. Taking the above mentioned factors into consideration, the author distinguishes various types and describes their characteristics. Zonal karst types are also described (tundra karst, temperate karst, subtropical karst, tropical karst), karst types that can be distinguished based on their geomorphic evolution are identified and their characteristics are presented.

Article PDF

Download to read the full article text

Similar content being viewed by others

Quaternary Geomorphology in India: Concepts, Advances and Applications

Chapter © 2019

River-damming landslides during the 1960 Chile earthquake (M9.5) and earlier events: implications for risk assessment in the San Pedro River basin

Article 10 March 2024

Cristian Araya-Cornejo, Matías Carvajal, … Felipe González

Lake District

Chapter © 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References Cited

  • Alföldi, L., Lorberer, Á., 1976. A Karsztos Kőzetek Háromdimenziós Áramlásának Vizsgálata Kútadatok Alapján (A Study of the Three-Dimensional Flow of Karst Rocks Based on Well Data). Hidrológiai Közlöny, 10: 433–443 (in Hungarian)

    Google Scholar 

  • Andrejchuk, V., 2002. Collapse above the World’s Largest Potash Mine (Ural, Russia). International Journal of Speleology, 31(1/4):137–158. https://doi.org/10.5038/1827-806x.31.1.8

    Article  Google Scholar 

  • Back, W., Hanshaw, B. B., Driel, J. N., 1984. Role of Groundwater in Shaping the Eastern Coastline of the Yucatan Peninsula, Mexico. In: La Fleur, R. G., ed., In Ground Water as a Geomorphic Agent. Allen-Unwin, Boston. 281–293

    Google Scholar 

  • Balázs, D., 1986. Kína Karsztvidékei (Karst Regions in China). Karszt és Barlang, II:123–132 (in Hungarian)

    Google Scholar 

  • Baumgardner, R. W., Hoadley, A. D., Goldstein, A. G., 1982. Formation of the Wink Sink, a Salt Dissolution and Collapse Feature, Winkler Country, Texas. University of Texas at Austin, Bureau of Economic Geology, Report of Investigations, 114:38

    Google Scholar 

  • Bögli, A., 1964. Le Schichttreppenkarst. Un Exemple de Complexe Glaciokarstique. Revue Belge de Geographie Ed. Soc. Roy. Geogr. Special Publ. Karst el Climats Froials, 88(1/2):64–82

    Google Scholar 

  • Briceño, H. O., Schubert, C., 1990. Geomorphology of the Gran Sabana, Guayana Shield, Southeastern Venezuela. Geomorphology, 3(2):125–141. https://doi.org/10.1016/0169-555x(90)90041-n

    Article  Google Scholar 

  • Calaforra, J. M., 1996. Some Examples of Gypsum Karren. In: Fornos, J. J., Ginés, A., eds., Karren Landforms. Universitat de les Illes Balears, Palma de Mallorca. 253–260

    Google Scholar 

  • Cui, Z. J., Li, D., Feng, J., et al., 2002. The Covered Karst, Weathering Crust and Karst (Double-Level) Planation Surface. Science in China Series D, 45(4):366–378. https://doi.org/10.1360/02yd9038

    Article  Google Scholar 

  • Cvijič, J., 1918. Hydrographie Souterraine et Évolution Morphologique Du Karst. Recueil des Travaux de l’Institut de Géographie Alpine, 6(4):375–426. https://doi.org/10.3406/rga.1918.4727

    Article  Google Scholar 

  • Cvijič, J., 1925. Types Morphologiques des Terrains Calcaires. C. R. Acad. Sci., Paris

    Google Scholar 

  • Day, M., Waltham, T., 2009. The Pinnacle Karrenfields of Mulu. In: Ginés, Á., Knez, M., Slabe, T., et al., eds., Karst Rock Features. Karren Sculpturing Zalozba ZRC. Institut za Raziskovanje Krasa ZRC SAZU, Postojna. Carsologica, 9. 423–432

    Google Scholar 

  • Delaty, J. N., Dobrilla, J. C., Wolozan, D., 2006. Observation Concernant les Tsingy de Madagascar et Plus Particulièrement Ceux de Bemaraha. Spelunca, 103:39–44

    Google Scholar 

  • Dicken, S. N., 1935. Kentucky Karst Landscapes. The Journal of Geology, 43(7):708–728. https://doi.org/10.1086/624363

    Article  Google Scholar 

  • Erőss, A., 2010. Characterization of Fluids and Evaluation of Their Effects on Karst Development at the Rózsadomb and Gellért Hill, Buda Thermal Karst Hungary: [Dissertation]. Eötvös Lóránd University, Budapest. 171

    Google Scholar 

  • Florea, L. J., Vacher, H. L., 2006. Springflow Hydrographs: Eogenetic vs. Telogenetic Karst. Ground Water, 44(3):352–361. https://doi.org/10.1111/j.1745-6584.2005.00158.x

    Article  Google Scholar 

  • Ford, D. C., 1979. A Review of Alpine Karst in the Southern Rocky Mountains of Canada. Bulletin of the National Speleological Society, 41: 53–65

    Google Scholar 

  • Ford, D. C., 1984. Karst Groundwater Activity and Landform Genesis in Modern Permafrost Regions of Canada. In: La Fleur, R. G., ed., Groundwater as a Geomorphic Agent. Allen & Unwin, London. 340–350

    Google Scholar 

  • Ford, D. C., 2004. Bear Rock Karst, Canada. In: Gunn, J., ed., Encyclopedia of Caves and Karst Science. Fitzroy Dearborn, New York, London. 137–138

    Google Scholar 

  • Ford, D. C., Williams, P. W., 2007. Karst Hydrogeology and Geomorphology. John Wiley and Sons, Ltd., Chichester. 562

    Book  Google Scholar 

  • Gams, I., 1978. The Polje: The Problem of Definition. Zeits. für Geomorphology, 22:170–181

    Google Scholar 

  • Ginés, Á., 2009. Karrenfield Landscapes and Karren Landforms. In: Ginés, Á., Knez, M., Slabe, T., et al., eds., Karst Rock Features. Karren Sculpturing. Zalozba ZRC. Institut za Raziskovanje Krasa ZRC SAZU, Postojna-Ljubljana, Carsologica, 9. 13–24

    Google Scholar 

  • Gómez-Pujol, L., Fornós, J. J., 2009. Coastal Karren in the Belearic Islands. In: Ginés, A., Knez, M., Slabe, T., et al., eds., Karst Rock Features. Karren Sculpturing Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna, Ljubljana. Carsologica, 9. 487–502

    Google Scholar 

  • Grund, A., 1914. Die Geographische Zyklus im Karst. Gesellschaft für Erdkunde, 52:621–640

    Google Scholar 

  • Gvozdetskiy, N. A., 1965. Types of Karst in the U.S.S.R. Separatum, Prob. Speleol. Res., Prague. 47–54

    Google Scholar 

  • Gvozdetskiy, N. A., 1981. Karst. Izd-vo Miszl, Moscow. 214

    Google Scholar 

  • Hevesi, A., 1986. Hideg vizek Létrehozta Karsztok Osztályozása (Classification of Cold-Water Karsts). Fóldrajzi Értesítő, 35:231–254 (in Hungarian)

    Google Scholar 

  • Horn, G., 1935. Über Die Bildung von Karsthóhlen Unter Einem Gletscher. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 5(7/8):494–498. https://doi.org/10.1080/00291953508542704

    Article  Google Scholar 

  • Jakucs, L., 1977. Morphogenetics of Karst Regions. Adam Hilgar, Bristol. 284

    Google Scholar 

  • Jennings, J. N., 1964. Geomorphology of Punchbowl and Signature Caves, Wee Jasper, New South Wales. Helectite, 2:57–80

    Google Scholar 

  • Jennings, J. N., 1985. Karst Geomorphology. Basil Blackwell, New York. 293

    Google Scholar 

  • Johnson, K. S., Collins, E. W., Seni, S. J., 2003. Sinkholes and Land Subsidence due to Salt Dissolution near Wink, West Texas and Other Sites in Western Texas and New Mexico. Oklahoma Geological Survey Circular, 109:163–195

    Google Scholar 

  • Klimchouk, A., 2004. Evaporite Karst. In: Gunn, J., ed., Encyclopedia of Caves and Karst Science. Fitzroy Dearborn, New York, London. 343–347

    Google Scholar 

  • Klimchouk, A., Andrejchuk, V., 2003. Karst Breakdown Mechanisms from Observations in the Gypsum Caves of the Western Ukraine: Implications for Subsidence Hazard Assessment. International Journal of Speleology, 31(1/4):55–88. https://doi.org/10.5038/1827-806x.31.1.4

    Article  Google Scholar 

  • Knez, M., Slabe, T., 2009. Lithological Characteristics Shape, and Rock Relief of the Lunan Stone Forests. In: Ginés, Á., Knez, M., Slabe, T., et al., eds., Karst Rock Features, Karren Sculpturing Zalozba ZRC. Institut za raziskovanje krasa ZRC SAZU, Postojna. Carsologica, 9: 439–452

    Google Scholar 

  • Komatina, M., 1982. A Fejlődés Feltételei és a Karsztos Területek Felosztása (Conditions of Evolution and Classification of Karst Areas). In: Burger, A., Dubertret, L., eds., Karsztterületek Hidrogeológiája. MKBT, Budapest. 23–35 (in Hungarian)

    Google Scholar 

  • Korzhuev, S. S., 1961. Merzlotnij Karszt Szrednego Prilenja i Nekotorije Oszobennoszti Jego Projavlenija. In: Sokolov, N. I., Gvozdetskiy, N. A., Balashov, L. S., eds., Regionalnoje Karsztovedenije. Izdatelsztvo AN SzSzSzR, Moscow. 207–220

    Google Scholar 

  • Kósa, A., 1981. A Bir Al Ghanam-i Sivatagi Gipsz-Karszt (Desert Gypsum Karst of Bir Al Ghanam). Karszt és Barlang, I/II: 21–26 (in Hungarian)

    Google Scholar 

  • Kovács, J., Müller, P., 1980. A Budai-Hegyek Hévizes Tevékenységének Kialakulása és Nyomai (Origin and Traces of Hydrothermal Activities in the Buda Range). Karszt és Barlang, II: 93–98 (in Hungarian)

    Google Scholar 

  • Kunaver, J., 1983. Geomorphology of the Kanin Mountains with Special Regard to the Glaciokarst. Geografski Zbornik, XXII(1):201–343

    Google Scholar 

  • Lauriol, B., Gray, J. T., 2006. Drainage Karstique en Milieu de Pergélisol: Le Cas de l’ile d’Akpatok, T.N.O. Canada. Permafrost and Periglacial Processes, 1(2):129–144. https://doi.org/10.1002/ppp.3430010205

    Article  Google Scholar 

  • Lauritzen, S. E., 1984. A Symposium: Arctic and Alpine Karst. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 38(3/4):139–143. https://doi.org/10.1080/00291958408552117

    Article  Google Scholar 

  • Leél-Őssy, S., 1959. Magyarország Karsztvidékei (Karst Regions of Hungary). Karszt és Barlangkutatás, I: 79–88 (in Hungarian)

    Google Scholar 

  • Leél-Őssy, S., 1960. Magyarország Karsztvidékei (Karst Regions of Hungary). Fóldrajzi Értesitő, 9(1–4):490–495 (in Hungarian)

    Google Scholar 

  • Leél-Őssy, S., 2017. Caves of Buda Thermal Karst. In: Klimchouk, A., Palmer, N., De Waele, A., et al., eds., Hypogene Karst Regions and Caves of the World. Springer International Publishing. 279–298

  • Liu, H., Tan, X. C., Li, L., et al., 2019. Eogenetic Karst in Interbedded Carbonates and Evaporites and Its Impact on Hydrocarbon Reservoir: A New Case from Middle Triassic Leikoupo Formation in Sichuan Basin, Southwest China. Journal of Earth Science, 30(5):908–923. https://doi.org/10.1007/s12583-019-0888-7

    Article  Google Scholar 

  • Lu, Y., Cooper, A. H., 1997. Gypsum Karst Geohazards in China. In: Beck, B. F., Stephenson, J. B., eds., Engineering Geology and Hydrogeology of Karst Terrains. Balkema, Rotterdam. 117–126

    Google Scholar 

  • Lundberg, 2009. Coastal Karren. In: Ginés, A., Knez, M., Slabe, T., et al., eds., Karst Rock Features. Karren Sculpturing Zalozba ZRC. Institut za Raziskovanje Krasa ZRC SAZU, Postojna, Ljubljana. Carsologica, 9. 249–264

    Google Scholar 

  • Macaluso, T., Sauro, U., 1996. The Karren in Evaporitic Rocks: A Proposal of Classification. In: Fornos, J. J., Ginés, A., eds., Karren Landforms, Universitat de les Illes Balears, Palma de Mallorca. 277–293

    Google Scholar 

  • Madonia, G., Sauro, U., 2009. The Karren Landscapes in the Evaporitic Rocks of Sicily. In: Ginés, Á., Knez, M., Slabe, T., et al., eds., Karst Rock Features, Karren Sculpturing Zalozba ZRC. Institut za Raziskovanje Krasa ZRC SAZU, Postojna. Carsologica, 9. 525–533

    Google Scholar 

  • Martinez, J., Johnson, K., Neal, J., 1998. Sinkholes in Evaporite Rocks. American Scientist, 86(1):38–51. https://doi.org/10.1511/1998.1.38

    Article  Google Scholar 

  • McLean, R. F., 1974. Geologic Significance of Bioerosion of Beachrock. In: Proceedings of the 2nd International Coral Reef Symposium. Great Barrier Reef Committee, Brisbane. 401–408

    Google Scholar 

  • Milanovič, P., Maksimovich, N., Meshcheriakova, O., 2019. Dams and Reservoirs in Evaporites. Springer, Cham. 157

    Book  Google Scholar 

  • Móga, J., Strat, D., Mari, L., et al., 2018a. A Meledic-Fennsik (Romanía) Sókarsztos Felszínformáinak Vizsgálata (Investigation of the Saltkarst Landforms of the Meledic Plateau, Romanía). Karszfejlődés, XXIII:113–139 (in Hungarian)

    Google Scholar 

  • Móga, J., Strat, D., Szabó, J., et al., 2018b. A Meledic-Fennsik (Románia) Sódolináinak Genetikai, Morfológiai, és Morfometriai Vizsgálata (Investigation of the Saltdolines of the Meledic Plateau, Romania). Karsztfejlődés, XXIII:141–162 (in Hungarian)

    Google Scholar 

  • Móga, J., Szabó, J., Gönczy, S., et al., 2017. Az Aknaszlatinai-Sókarszt Dinamikusan Változó Felszínformáinak Vizsgálata Terepi és gis mó Dszerekkel (The Study of the Dynamically Changing Landforms of Aknaszlatina Salt Karst by Field and GIS Methods). Karsztfejlődés, XXII:139–161 (in Hungarian)

    Google Scholar 

  • Pollard, W., Omelon, C., Andersen, D., et al., 1999. Perennial Spring Occurrence in the Expedition Fiord Area of Western Axel Heiberg Island, Canadian High Arctic. Canadian Journal of Earth Sciences, 36(1):105–120. https://doi.org/10.1139/e98-097

    Article  Google Scholar 

  • Pulina, M., 2005. Le Karst et les Phenomenes Karstiques Similaires des Regions Froides. In: Salomon, J. N., Pulina, M., eds., Les Karsts des Regions Climatiques Extremes. Karstologia Mémoires, 14:11–100

  • Quinlan, J. F., 1978. Types of Karst, with Emphasis on Cover Beds in Their Classification and Development: [Dissertation]. University of Texas Austin, Austin

    Google Scholar 

  • Quinlan, J. F., Smith, A. R., Johnson, K. S., 1986. Gypsum Karst and Salt Karst of the United States of America. Le Grotte d’Italia, 4(13):73–92

    Google Scholar 

  • Rónaki, L., 1970. Karsztnevezéktani Javaslat (Karst Nomenclature Suggestion). Karszt és Barlang, II:77–84 (in Hungarian)

    Google Scholar 

  • Sauro, U., 2012. Closed Depressions in Karst Areas. In: White, W. B., Culver, D. C., eds., Encyclopedia of Caves. Elsevier, Amsterdam. 140–155

    Chapter  Google Scholar 

  • Siever, R., 1962. Silica Solubility, 0°–200° C, and the Diagenesis of Siliceous Sediments. The Journal of Geology, 70(2):127–150. https://doi.org/10.1086/626804

    Article  Google Scholar 

  • Siffert, B., 1962. Quelques Reactions de la Silice en Solution: La Formation des Argiles. Mémoires du Service de la Carte Géologique d’Alsace et de Lorraine, 21:50–75

    Google Scholar 

  • Skoglund, R. Ø., Lauritzen, S. E., Gabrovšek, F., 2010. The Impact of Glacier Ice-Contact and Subglacial Hydrochemistry on Evolution of Maze Caves: A Modelling Approach. Journal of Hydrology, 388(1/2):157–172. https://doi.org/10.1016/j.jhydrol.2010.04.037

    Article  Google Scholar 

  • Smart, C., 2004. Glacierized and Glaciated Karst. In: Gunn, J., ed., Encyclopedia of Caves and Karst Science. Fitzroy-Dearborn, New York, London. 389–390

    Google Scholar 

  • Smart, P. I., 1986. Origin and Development of Glacio-Karst Closed Depressions in the Picos de Europa, Spain. Zeitschrift für Geomorphologie, 32(4):423–443

    Google Scholar 

  • Sweeting, M. M., 1973. Karst Landforms. Columbia University Press, New York. 362

    Google Scholar 

  • Szablyár, P., 1981. Az Umm Al Masabih-Barlang (Líbia) Morfogenetikája (Morphogenetics of Umm Al Masabih Cave). Karszt és Barlang, I/II: 27–34 (in Hungarian)

    Google Scholar 

  • Trudgill, S. T., 1985. Limestone Geomorphology. Longman, New York. 196

    Google Scholar 

  • Van Everdingen, R. O., 1981. Morphology, Hydrology and Hydrochemistry of Karst in Permafrost near Great Bear Lake, Northwest Territories, Paper 11. National Hydrological Research Institute of Canada, Saskatoon. 53

    Google Scholar 

  • Venkovits, I., 1959. Karsztvíz Nevezéktani vita (Karstwater Nomenclature Debate). Karszt és Barlangkutatás, I:25–28 (in Hungarian)

    Google Scholar 

  • Veress, M., 2000. Covered Karst Evolution Northern Bakony Mountains, W-Hungary. A Bakony Természettud. Kut. Eredményei 23, Bakonyi Természettudományi Múzeum, Zirc. 167

    Google Scholar 

  • Veress, M., 2010. Karst Environments. Karren Formation in High Mountains. Springer, Dordrecht, Heidelberg, London, New York. 230

    Book  Google Scholar 

  • Veress, M., 2016. Covered Karst. Springer, Berlin, Heidelberg, New York. 536. https://doi.org/10.1007/978-94-017-7518-2

    Book  Google Scholar 

  • Veress, M., 2017. Solution Doline Development on Glaciokarst in Alpine and Dinaric Areas. Earth-Science Reviews, 173:31–48. https://doi.org/10.1016/j.earscirev.2017.08.006

    Article  Google Scholar 

  • Veress, M., 2019. The Karren and Karren Formation of Bare Slopes. Earth-Science Reviews, 188: 272–290. https://doi.org/10.1016/j.earscirev.2018.11.006

    Article  Google Scholar 

  • Veress, M., Lóczy, D., Zentai, Z., et al., 2008. The Origin of the Bemaraha Tsingy (Madagascar). International Journal of Speleology, 37(2):131–142. https://doi.org/10.5038/1827-806x.37.2.6

    Article  Google Scholar 

  • Veress, M., Puskás, J., Zentai, Z., et al., 2011. Development of Karren Formation on the Saltic Hill of Praid (Transylvanian Basin, Romania). Carpathian Journal of Earth and Environmental Sciences, 6(2):183–194

    Google Scholar 

  • Veress, M., Telbisz, T., Tóth, G., et al., 2019. Glaciokarst. Springer Geography, Cham. 516. https://doi.org/10.1007/978-3-319-97292-3

    Book  Google Scholar 

  • Veress, M., Tóth, G., 2015. Káli Basin: Pseudokarren on Sandstone. In: Lóczy, D., ed., Landscapes and Landforms of Hungary. Springer, Cham Heidelberg, New York, Dordrecht, London. 79–87. https://doi.org/10.1007/973-3-319-08957-3

    Chapter  Google Scholar 

  • Veress, M., Vetési-Foith, S., 2019. The Distribution of Surface Karst Features in the Bakony Region (Transdanubian Mountains, Hungary). Journal of Geological Research, 1(1):21–25. https://doi.org/10.30564/jgr.v1i1.622

    Article  Google Scholar 

  • Veress, M., Zentai, Z., Péntek, K., et al., 2014. A Léna Pillérei (The Lena Pillars). Földrajzi Közlemények, 138(1):17–36 (in Hungarian)

    Google Scholar 

  • Waele, J. D., Piccini, L., Columbu, A., et al., 2017. Evaporite Karst in Italy: A Review. International Journal of Speleology, 46(2):137–168

    Article  Google Scholar 

  • Waltham, A. C., Fookes, P. G., 2003. Engineering Classification of Karst Ground Conditions. Quarterly Journal of Engineering Geology and Hydrogeology, 36(2):101–118. https://doi.org/10.1144/1470-9236/2002-33

    Article  Google Scholar 

  • Waltham, T., 2008. Fengcong, Fenglin, Cone Karst. Cave and Karst Science, 35(3):77–88

    Google Scholar 

  • Waltham, T., Bell, F., Culshaw, M., 2005. Sinkholes and Subsidence. Springer, Berlin Heidelberg. 382

    Google Scholar 

  • White, W. B., 1988. Geomorphology and Hydrology of Karst Terrains. Oxford University Press, New York, Oxford. 464

    Google Scholar 

  • Williams, P. W., 1966. Limestone Pavements with Special Reference to Western Ireland. Transactions of the Institute of British Geographers, 40:155–172. https://doi.org/10.2307/621575

    Article  Google Scholar 

  • Williams, P. W., 1971. Illustrating Morphometric Analysis of Karst with Examples from New Guinea. Zeitschrift für Geomorphologie, 15(1):40–61

    Google Scholar 

  • Williams, P. W., 1985. Subcutaneous Hydrology and the Development of Doline and Cockpit Karst. Zeitschrift für Geomorphologie, 29(4):463–482

    Google Scholar 

  • Williams, P. W., 2004. Dolines. In: Gunn, J., ed., Encyclopedia of Caves and Karst Science. Fitzroy Dearborn, New York, London. 304–310

    Google Scholar 

  • Williams, P. W., 2009. Arête and Pinnacle Karst of Mount Kaijende. In: Ginés, Á., Knez, M., Slabe, T., et al., eds., Karst Rock Features. Karren Sculpturing Zalozba ZRC. Institut za Raziskovanje Krasa ZRC SAZU, Postojna. Carsologica, 9. 433–437

    Google Scholar 

  • Wray, R., 1997. A Global Review of Solutional Weathering Forms on Quartz Sandstones. Earth-Science Reviews, 42(3):137–160. https://doi.org/10.1016/s0012-8252(96)00056-6

    Article  Google Scholar 

Download references

Acknowledgments

Thanks go to the reviewers and the editors for their useful suggestions and comments. Open access funding provided by Eötvös Loránd University (ELTE), Hungary. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1306-x.

Author information

Authors and Affiliations

  1. Department of Geography, Eötvös Lóránd University, Szombathely, 9700, Hungary

    Márton Veress

Authors
  1. Márton Veress
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Márton Veress.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veress, M. Karst Types and Their Karstification. J. Earth Sci. 31, 621–634 (2020). https://doi.org/10.1007/s12583-020-1306-x

Download citation

  • Received: 12 October 2019

  • Accepted: 03 January 2020

  • Published: 15 June 2020

  • Issue Date: June 2020

  • DOI: https://doi.org/10.1007/s12583-020-1306-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key Words

  • karst
  • karst type
  • classification of karsts
  • characteristics of karst type
  • azonal karst type
  • zonal karst type
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature