Skip to main content

Glacial Lakes in the Andes under a Changing Climate: A Review

Abstract

In this article, we review the current knowledge of the glacial recession and related glacial lake development in the Andes of South America. Since the mid-1980s, hundreds of glacial lakes either expanded or formed, and predictions show that additional hundreds of lakes will form throughout the 21st century. However, studies on glacial lakes in the Andes are still relatively rare. Many glacial lakes pose a potential hazard to local communities, but glacial lake outburst floods (GLOFs) are understudied. We provide an overview on hazards from glacial lakes such as GLOFs and water pollution, and their monitoring approaches. In real-time monitoring, the use of unmanned aerial systems (UASs) and early warning systems (EWSs) is still extremely rare in the Andes, but increasingly authorities plan to install mitigation systems to reduce glacial lake risk and protect local communities. In support, we propose an international remote sensing-based observation initiative following the model of, for example, the Global Land Ice Measurements from Space (GLIMS) one, with the headquarters in one of the Andean nations.

This is a preview of subscription content, access via your institution.

References Cited

  1. Aguilar, P., Dorador, C., Vila, I., et al., 2018. Bacterioplankton Composition in Tropical High-Elevation Lakes of the Andean Plateau. FEMS Microbiology Ecology, 94(3): fiy004. https://doi.org/10.1093/femsec/fiy004

    Article  Google Scholar 

  2. Altamirano Rua, T., 2014. Refugiados Ambientales: Cambio Climático y Migración Forzada. Fondo Editorial, Ponteficia Universidad Católica del Peru, Lima

    Google Scholar 

  3. ANA, 2012. Inventario Nacional de Glaciares y Lagunas: Inventario de Lagunas de las Cordillera Blanca (Resumen). ANA, Lima

    Google Scholar 

  4. Anacona, P. I., 2016. Hazardous Geomorphic Processes in the Extratropical Andes with a Focus on Glacial Lake Outburst Floods: [Dissertation]. Victoria University of Wellington, Wellington, New Zealand

    Google Scholar 

  5. Anacona, P. I., Norton, K. P., Mackintosh, A., 2014. Moraine-Dammed Lake Failures in Patagonia and Assessment of Outburst Susceptibility in the Baker Basin. Natural Hazards and Earth System Sciences, 14: 3243–3259. https://doi.org/10.5194/nhess-14-3243-2014

    Article  Google Scholar 

  6. Anacona, P. I., Mackintosh, A., Norton, K., 2015a. Reconstruction of a Glacial Lake Outburst Flood (GLOF) in the Engaño Valley, Chilean Patagonia: Lessons for GLOF Risk Management. Science of the Total Environment, 527/528(1): 1–11. https://doi.org/10.1016/j.scitotenv.2015.04.096

    Article  Google Scholar 

  7. Anacona, P. I., Mackintosh, A., Norton, K. P., 2015b. Hazardous Processes and Events from Glacier and Permafrost Areas: Lessons from the Chilean and Argentinean Andes. Earth Surface Processes and Landforms, 40(1): 2–21. https://doi.org/10.1002/esp.3524

    Article  Google Scholar 

  8. Anacona, P. I., Norton, K., Mackintosh, A., et al., 2018. Dynamics of an Outburst Flood Originating from a Small and High-Altitude Glacier in the Arid Andes of Chile. Natural Hazards, 94(1): 93–119. https://doi.org/10.1007/s11069-018-3376-y

    Article  Google Scholar 

  9. Balseiro, E., Modenutti, B., Queimaliños, C., et al., 2007. Daphnia Distribution in Andean Patagonian Lakes: Effect of Low Food Quality and Fish Predation. Aquatic Ecology, 41(4): 599–609. https://doi.org/10.1007/s10452-007-9113-3

    Article  Google Scholar 

  10. Barcaza, G., Nussbaumer, S. U., Tapia, G., et al., 2017. Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America. Annals of Glaciology, 58: 166–180. https://doi.org/10.1017/aog.2017.28

    Article  Google Scholar 

  11. Barry, R. G., 2006. The Status of Research on Glaciers and Global Glacier Recession: A Review. Progress in Physical Geography: Earth and Environment, 30(3): 285–306. https://doi.org/10.1191/0309133306pp478ra

    Article  Google Scholar 

  12. Barta, B., Mouillet, C., Espinosa, R., et al., 2018. Glacial-Fed and Páramo Lake Ecosystems in the Tropical High Andes. Hydrobiologia, 813(1): 19–32. https://doi.org/10.1007/s10750-017-3428-4

    Article  Google Scholar 

  13. Bastgianon, E., Bertoldi, W., Dussaillant, A., 2012. Glacial-Lake Outburst Flood Effects on Colonia River Morphology, Chilean Patagonia. In: Murillo Munoz, R. E., ed., River Flow. Taylor and Francis, London. 573–579

    Google Scholar 

  14. Bastidas Navarro, M., Martyniuk, N., Balseiro, E., et al., 2018. Effect of Glacial Lake Outburst Floods on the Light Climate in an Andean Patagonian Lake: Implications for Planktonic Phototrophs. Hydrobiologia, 816(1): 39–48. https://doi.org/10.1007/s10750-016-3080-4

    Article  Google Scholar 

  15. Benn, D. I., Evans, D. J. A., 1998. Glaciers and Glaciation. Hodder Education, London

    Google Scholar 

  16. Bhardwaj, A., Sam, L., Akanksha, et al., 2016. UAVs as Remote Sensing Platform in Glaciology: Present Applications and Future Prospects. Remote Sensing of Environment, 175(23): 196–204. https://doi.org/10.1016/j.rse.2015.12.029

    Article  Google Scholar 

  17. Bianchi, V. A., Castro, J. M., Rocchetta, I., et al., 2014. Health Status and Bioremediation Capacity of Wild Freshwater Mussels (Diplodon Chilensis) Exposed to Sewage Water Pollution in a Glacial Patagonian Lake. Fish & Shellfish Immunology, 37(2): 268–277. https://doi.org/10.1016/j.fsi.2014.02.013

    Article  Google Scholar 

  18. Bown, F., Rivera, A., 2006. Climate Changes and Recent Glacier Behaviour in the Chilean Lake District. Global and Planetary Change, 59(1/2/3/4): 79–86. https://doi.org/10.1016/j.gloplacha.2006.11.015

    Google Scholar 

  19. Bown, F., Rivera, A., Acuña, C., 2008. Recent Glacier Variations at the Aconcagua Basin, Central Chilean Andes. Annals of Glaciology, 48: 43–48. https://doi.org/10.3189/172756408784700572

    Article  Google Scholar 

  20. Bradley, R. S., Keinig, F. T., Diaz, H. F., 2004. Projected Temperature Changes along the American Cordillera and the Planned GCOS Network. Geophysical Research Letters, 31(16): L16210. https://doi.org/10.1029/2004gl020229

    Article  Google Scholar 

  21. Bradley, R. S., Vuille, M., Diaz, H. F., et al., 2006. Climate Change: Threats to Water Supplies in the Tropical Andes. Science, 312(5781): 1755–1756. https://doi.org/10.1126/science.1128087

    Article  Google Scholar 

  22. Bravo, C., Loriaux, T., Rivera, A., et al., 2017. Assessing Glacier Melt Contribution to Streamflow at Universidad Glacier, Central Andes of Chile. Hydrology and Earth System Sciences, 21(7): 3249–3266. https://doi.org/10.5194/hess-21-3249-2017

    Article  Google Scholar 

  23. Broggi, J. A., 1942. Informe Preliminar Sobre la Exploración y Estudio de las Condiciones de Estabilidad de las Lagunas de la Cordillera Blanca. Lima, Julio. Doc #I-GEOL-001, Biblioteca, Unidad de Glaciología y Recursos Hídricos, Huaraz

    Google Scholar 

  24. Bury, J. T., Mark, B. G., McKenzie, J. M., et al., 2011. Glacier Recession and Human Vulnerability in the Yanamarey Watershed of the Cordillera Blanca, Peru. Climatic Change, 105(1/2): 179–206. https://doi.org/10.1007/s10584-010-9870-1

    Article  Google Scholar 

  25. Carey, M., 2005. Living and Dying with Glaciers: People’s Historical Vulnerability to Avalanches and Outburst Floods in Peru. Global and Planetary Change, 47(2/3/4): 122–134. https://doi.org/10.1016/j.gloplacha.2004.10.007

    Article  Google Scholar 

  26. Carey, M., Huggel, C., Bury, J., et al., 2012. An Integrated Socio-Environmental Framework for Glacier Hazard Management and Climate Change Adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change, 112(3/4): 733–767. https://doi.org/10.1007/s10584-011-0249-8

    Article  Google Scholar 

  27. Carrivick, J. L., Quincey, D. J., 2014. Progressive Increase in Number and Volume of Ice-Marginal Lakes on the Western Margin of the Greenland Ice Sheet. Global and Planetary Change, 116(Suppl. 2): 156–163. https://doi.org/10.1016/j.gloplacha.2014.02.009

    Article  Google Scholar 

  28. Cartuche, A., Guan, Z. Y., Ibelings, B. W., et al., 2019. Phytoplankton Diversity Relates Negatively with Productivity in Tropical High-Altitude Lakes from Southern Ecuador. Sustainability, 11(19): 5235. https://doi.org/10.3390/su11195235

    Article  Google Scholar 

  29. Che, T., Xiao, L., Liou, Y. A., 2014. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet). Advances in Meteorology, (6): 1–8. https://doi.org/10.1155/2014/903709

  30. Chevallier, P., Pouyaud, B., Suarez, W., et al., 2011. Climate Change Threats to Environment in the Tropical Andes: Glaciers and Water Resources. Regional Environmental Change, 11(S1): 179–187. https://doi.org/10.1007/s10113-010-0177-6

    Article  Google Scholar 

  31. Chisolm, R. E., McKinney, D. C., 2018. Dynamics of Avalanche-Generated Impulse Waves: Three-Dimensional Hydrodynamic Simulations and Sensitivity Analysis. Natural Hazards and Earth System Sciences, 18(5): 1373–1393. https://doi.org/10.5194/nhess-18-1373-2018

    Article  Google Scholar 

  32. Colonia, D., Torres, J., Haeberli, W., et al., 2017. Compiling an Inventory of Glacier-Bed Overdeepenings and Potential New Lakes in De-Glaciating Areas of the Peruvian Andes: Approach, First Results, and Perspectives for Adaptation to Climate Change. Water, 9(5): 336. https://doi.org/10.3390/w9050336

    Article  Google Scholar 

  33. Concha, F. J., Hoempler, A., 1953. Índice de Lagunas y Glaciares de la Cordillera Blanca. Estudio, Comisión de Control de Las Lagunas de la Cordillera Blanca, Ministerio de Fomento, Lima, Mayo. Doc # I-INVEN-011 at Biblioteca, Unidad de Glaciología y Recursos Hídricos, Huaraz

    Google Scholar 

  34. Cook, S. J., Quincey, D. J., 2015. Estimating the Volume of Alpine Glacial Lakes. Earth Surface Dynamics, 3(4): 559–575. https://doi.org/10.5194/esurf-3-559-2015

    Article  Google Scholar 

  35. Cook, S. J., Kougkoulos, I., Edwards, L. A., et al., 2016. Glacier Change and Glacial Lake Outburst Flood Risk In the Bolivian Andes. The Cryosphere, 10(5): 2399–2413. https://doi.org/10.5194/tc-10-2399-2016

    Article  Google Scholar 

  36. Costa, J. E., Schuster, R. L., 1988. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 100: 1054–1068. https://doi.org/10.1130/0016-7606(1988)100<1054:tfafon>2.3.co;2

    Article  Google Scholar 

  37. Davies, B. J., Glasser, N. F., 2012. Accelerating Shrinkage of Patagonian Glaciers from the Little Ice Age (∼AD 1870) to 2011. Journal of Glaciology, 58(212): 1063–1084. https://doi.org/10.3189/2012jog12j026

    Article  Google Scholar 

  38. De los Ríos Escalante, P., Acevedo, P., 2016. First Observations on Zooplankton and Optical Properties in a Glacial North Patagonian Lake (Tagua Tagua Lake, 41°S Chile). Polish Journal of Environmental Studies, 25(1): 453–457. https://doi.org/10.15244/pjoes/59369

    Article  Google Scholar 

  39. Drenkhan, F., Guardamino, L., Huggel, C., et al., 2018. Current and Future Glacier and Lake Assessment in the Deglaciating Vilcanota-Urubamba Basin, Peruvian Andes. Global and Planetary Change, 169: 105–118. https://doi.org/10.1016/j.gloplacha.2018.07.005

    Article  Google Scholar 

  40. Dussaillant, A., Benito, G., Buytaert, W., et al., 2010. Repeated Glacial-Lake Outburst Floods in Patagonia: An Increasing Hazard?. Natural Hazards, 54(2): 469–481. https://doi.org/10.1007/s11069-009-9479-8

    Article  Google Scholar 

  41. Dussaillant, I., Berthier, E., Brun, F., et al., 2019. Two Decades of Glacier Mass Loss along the Andes. Nature Geoscience, 12: 802–808. https://doi.org/10.1038/s41561-019-0432-5

    Article  Google Scholar 

  42. Emmer, A., 2017. Geomorphologically Effective Floods from Moraine-Dammed Lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 177: 220–234. https://doi.org/10.1016/j.quascirev.2017.10.028

    Article  Google Scholar 

  43. Emmer, A., Vilímek, V., 2013. Lake and Breach Hazard Assessment for Moraine-Dammed Lakes: An Example from the Cordillera Blanca (Peru). Natural Hazards and Earth System Sciences, 13: 1551–1565. https://doi.org/10.5194/nhess-13-1551-2013

    Article  Google Scholar 

  44. Emmer, A., Klimeš, J., Mergili, M., et al., 2016. 882 Lakes of the Cordillera Blanca: An Inventory, Classification, Evolution and Assessment of Susceptibility to Outburst Floods. Catena, 147: 269–279. https://doi.org/10.1016/j.catena.2016.07.032

    Article  Google Scholar 

  45. Faeh, R., Mueller, R., Rousselot, P., et al., 2011. BASEMENT—Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation. VAW, ETH Zurich. http://www.basement.ethz.ch

  46. Falaschi, D., Bolch, T., Lenzano, M. G., et al., 2018. New Evidence of Glacier Surges in the Central Andes of Argentina and Chile. Progress in Physical Geography: Earth and Environment, 42(6): 792–825. https://doi.org/10.1177/0309133318803014

    Article  Google Scholar 

  47. Farías-Barahona, D., Vivero, S., Casassa, G., et al., 2019. Geodetic Mass Balances and Area Changes of Echaurren Norte Glacier (Central Andes, Chile) between 1955 and 2015. Remote Sensing, 11(3): 260. https://doi.org/10.3390/rs11030260

    Article  Google Scholar 

  48. Favier, V., Wagnon, P., Ribstein, P., 2004. Glaciers of the Outer and Inner Tropics: A Different Behaviour but a Common Response to Climatic Forcing. Geophysical Research Letters, 31(16): L16403. https://doi.org/10.1029/2004gl020654

    Article  Google Scholar 

  49. Foresta, L., Gourmelen, N., Weissgerber, F., et al., 2018. Heterogeneous and Rapid Ice Loss over the Patagonian Ice Fields Revealed by CryoSat-2 Swath Radar Altimetry. Remote Sensing of Environment, 211(2): 441–455. https://doi.org/10.1016/j.rse.2018.03.041

    Article  Google Scholar 

  50. Francou, B., Ribstein, P., Semiond, H., et al., 1995. Balances de Glaciares y Clima en Bolivia y Peru: Impacto de los Eventos ENSO. Bulletin de l’Institut Français d’Études Andines, 24: 661–670

    Google Scholar 

  51. Frey, H., Haeberli, W., Linsbauer, A., et al., 2010. A Multi-Level Strategy for Anticipating Future Glacier Lake Formation and Associated Hazard Potentials. Natural Hazards and Earth System Sciences, 10(2): 339–352. https://doi.org/10.5194/nhess-10-339-2010

    Article  Google Scholar 

  52. Frey, H., García-Hernández, J., Huggel, C., et al., 2014. An Early Warning System for Lake Outburst Floods of the Laguna 513, Cordillera Blanca, Peru. In: International Conference on the Analysis and Management of Changing Risks for Natural Hazards. Nov. 18–19, 2014, Padua

  53. Frey, H., Huggel, C., Chisolm, R. E., et al., 2018. Multi-Source Glacial Lake Outburst Flood Hazard Assessment and Mapping for Huaraz, Cordillera Blanca, Peru. Frontiers in Earth Science, 6: 210. https://doi.org/10.3389/feart.2018.00210

    Article  Google Scholar 

  54. Glasser, N. F., Holt, T. O., Evans, Z. D., et al., 2016. Recent Spatial and Temporal Variations in Debris Cover on Patagonian Glaciers. Geomorphology, 273(2): 202–216. https://doi.org/10.1016/j.geomorph.2016.07.036

    Article  Google Scholar 

  55. Gradstein, R., Vanderpoorten, A., Van Reenen, G., et al., 2018. Mass Occurrence of the Liverwort Herbertus Sendtneri in a Glacial Lake in the Andes of Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42(164): 221–229. https://doi.org/10.18257/raccefyn.666

    Article  Google Scholar 

  56. Guardamino, L., Drenkhan, F., 2016. Evolución y Potencial Amenaza de Lagunas Glaciares En La Cordillera de Vilcabamba (Cusco y Apurímac, Perú) Entre 1991 y 2014. Revista de Glaciares y Ecosistemas de Montaña, (1): 21–36. https://doi.org/10.36580/rgem.i1.21-36

  57. Haeberli, W., 1980. Morphodynamische Aspekte Aktueller Gletscherhochwasser in den Schweizer Alpen. Regio Basiliensis, 21: 58–78

    Google Scholar 

  58. Haeberli, W., 1983. Frequency and Characteristics of Glacier Floods in the Swiss Alps. Annals of Glaciology, 4: 85–90. https://doi.org/10.1017/s0260305500005280

    Article  Google Scholar 

  59. Hanshaw, M. N., Bookhagen, B., 2014. Glacial Areas, Lake Areas, and Snow Lines from 1975 to 2012: Status of the Cordillera Vilcanota, Including the Quelccaya Ice Cap, Northern Central Andes, Peru. The Cryosphere, 8(2): 359–376. https://doi.org/10.5194/tc-8-359-2014

    Article  Google Scholar 

  60. Harrison, S., Glasser, N., Winchester, V., et al., 2006. A Glacial Lake Outburst Flood Associated with Recent Mountain Glacier Retreat, Patagonian Andes. The Holocene, 16(4): 611–620. https://doi.org/10.1191/0959683606hl957rr

    Article  Google Scholar 

  61. Hoffmann, D., 2013. Comparison of Recently Formed Glacial Lakes in the Bolivian Andes and the Southern Alps of New Zealand: Differences and Similarities. Proceedings of High Mountains Adaptation Partnership Workshop, Huaraz, Peru

  62. Hoffmann, D., Weggenmann, D., 2013. Climate Change Induced Glacier Retreat and Risk Management: Glacial Lake Outburst Floods (GLOFs) in the Apolobamba Mountain Range, Bolivia. In: Filho, W. H., ed., Climate Change and Disaster Risk Management. Springer, Berlin. 71–87. https://doi.org/10.1007/978-3-642-31110-9_5

    Chapter  Google Scholar 

  63. Huggel, C., Kääb, A., Haeberli, W., et al., 2002. Remote Sensing Based Assessment of Hazards from Glacier Lake Outbursts: A Case Study in the Swiss Alps. Canadian Geotechnical Journal, 39(2): 316–330. https://doi.org/10.1139/t01-099

    Article  Google Scholar 

  64. Huggel, C., Kääb, A., Haeberli, W., et al., 2003. Regional-Scale GIS-Models for Assessment of Hazards from Glacier Lake Outbursts: Evaluation and Application in the Swiss Alps. Natural Hazards and Earth System Sciences, 3(6): 647–662. https://doi.org/10.5194/nhess-3-647-2003

    Article  Google Scholar 

  65. ICIMOD, 2011. Glacial Lakes and Glacial Lake Outburst Floods in Nepal. International Centre for Integrated Mountain Development, Kathmandu

    Google Scholar 

  66. Iturrizaga, L., 2014. Glacial and Glacially Conditioned Lake Types in the Cordillera Blanca, Peru. Progress in Physical Geography: Earth and Environment, 38(5): 602–636. https://doi.org/10.1177/0309133314546344

    Article  Google Scholar 

  67. Iturrizaga, L., Charrier, R., 2013. Glacialmorphological Reconstruction of Glacier Advances and Glacial Lake Outburst Floods at the Cachapoal Glacier in the Dry Central Andes of Chile (34°S). EGU General Assembly. Apr. 7–12, 2013, Vienna. EGU2013-2320

  68. Ives, J. D., Shrestha, R. B., Mool, P. K., 2010. Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment. International Centre for Integrated Mountain Development, Kathmandu

    Google Scholar 

  69. Izurieta, R., Campana, A., Calles, J., et al., 2019. Calidad del agua en Ecuador. In: Roldan, G., Tundisi, J., Jimenez, B., et al., eds., Calidad del Agua en las Americas: Riesgos y Oportunidades. IANAS, Tlalpan, Mexico. 661

    Google Scholar 

  70. Jacquet, J., McCoy, S. W., McGrath, D., et al., 2017. Hydrologic and Geomorphic Changes Resulting from Episodic Glacial Lake Outburst Floods: Rio Colonia, Patagonia, Chile. Geophysical Research Letters, 44(2): 854–864. https://doi.org/10.1002/2016gl071374

    Article  Google Scholar 

  71. Kääb, A., Huggel, C., Fischer, L., et al., 2005. Remote Sensing of Glacier- and Permafrost-Related Hazards in High Mountains: A Review. Natural Hazards and Earth System Sciences, 5: 527–554. https://doi.org/10.5194/nhess-5-527-2005

    Article  Google Scholar 

  72. Khanal, N. R., Hu, J. M., Mool, P., 2015. Glacial Lake Outburst Flood Risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas. Mountain Research and Development, 35(4): 351–364. https://doi.org/10.1659/mrd-journal-d-15-00009

    Article  Google Scholar 

  73. King, W. D. V. O., 1934. The Mendoza River Flood of 10–11 January 1934, Argentina. The Geographical Journal, 84(4): 321–326. https://doi.org/10.2307/1786696

    Article  Google Scholar 

  74. Klimeš, J., Benesova, M., Vilímek, M., et al., 2014. The Construction of a Glacial Lake Outburst Flood Using HEC-RAS and Its Significance for Future Hazard Assessments: An Example from Lake 513 in the Cordillera Blanca, Peru. Natural Hazards, 71: 1617–1638. https://doi.org/10.1007/s11069-013-0968-4

    Article  Google Scholar 

  75. Klimeš, J., Novotný, J., Novotná, I., et al., 2016. Landslides in Moraines as Triggers of Glacial Lake Outburst Floods: Example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides, 13(6): 1461–1477. https://doi.org/10.1007/s10346-016-0724-4

    Article  Google Scholar 

  76. Kougkoulos, I., 2019. Glacial Lake Outburst Flood Risk in the Bolivian Andes: [Dissertation]. Manchester Metropolitan University, Manchester

    Google Scholar 

  77. Kougkoulos, I., Cook, S. J., Jomelli, V., et al., 2018a. Use of Multi-Criteria Decision Analysis to Identify Potentially Dangerous Glacial Lakes. Science of the Total Environment, 621: 1453–1466. https://doi.org/10.1016/j.scitotenv.2017.10.083

    Article  Google Scholar 

  78. Kougkoulos, I., Cook, S. J., Edwards, L. A., et al., 2018b. Modelling Glacial Lake Outburst Flood Impacts in the Bolivian Andes. Natural Hazards, 94(3): 1415–1438. https://doi.org/10.1007/s11069-018-3486-6

    Article  Google Scholar 

  79. Liversedge, L. K., 2007. Turbidity Mapping and Prediction in Ice Marginal Lakes at the Bering Glacier System, Alaska: [Dissertation]. University of Michigan, Ann Arbor

    Google Scholar 

  80. Lizaga, I., Gaspar, L., Quijano, L., et al., 2019. NDVI, 137Cs and Nutrients for Tracking Soil and Vegetation Development on Glacial Landforms in the Lake Parón Catchment (Cordillera Blanca, Perú). Science of the Total Environment, 651(3): 250–260. https://doi.org/10.1016/j.scitotenv.2018.09.075

    Article  Google Scholar 

  81. Lliboutry, L., 1956. Nieves y Glaciares de Chile. Universidad de Chile, Santiago

    Google Scholar 

  82. López-Moreno, J. I., Fontaneda, S., Bazo, J., et al., 2014. Recent Glacier Retreat and Climate Trends in Cordillera Huaytapallana, Peru. Global and Planetary Change, 112: 1–11. https://doi.org/10.1016/j.gloplacha.2013.10.010

    Article  Google Scholar 

  83. López-Moreno, J. I., Valero-Garcés, B., Mark, B., et al., 2017. Hydrological and Depositional Processes Associated with Recent Glacier Recession in Yanamarey Catchment, Cordillera Blanca (Peru). Science of the Total Environment, 579(22): 272–282. https://doi.org/10.1016/j.scitotenv.2016.11.107

    Article  Google Scholar 

  84. Loriaux, T., Casassa, G., 2013. Evolution of Glacial Lakes from the Northern Patagonia Icefield and Terrestrial Water Storage in a Sea-Level Rise Context. Global and Planetary Change, 102(2): 33–40. https://doi.org/10.1016/j.gloplacha.2012.12.012

    Article  Google Scholar 

  85. Maas, H. G., Mulsow, C., Wendt, A., et al., 2012. Pilot Studies with Photogrammetric Glacier Lake Outburst Flood Early Warning System. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 39-B5, 22nd ISPRS Congress. Aug. 25-Sept. 1 2012, Melbourne. 523–527

  86. Malmros, J. K., Mernild, S. H., Wilson, R., et al., 2016. Glacier Area Changes in the Central Chilean and Argentinean Andes 1955–2013/14. Journal of Glaciology, 62(232): 391–401. https://doi.org/10.1017/jog.2016.43

    Article  Google Scholar 

  87. Marín, V. H., Tironi, A., Paredes, M. A., et al., 2013. Modeling Suspended Solids in a Northern Chilean Patagonia Glacier-Fed Fjord: GLOF Scenarios under Climate Change Conditions. Ecological Modelling, 264(3/4): 7–16. https://doi.org/10.1016/j.ecolmodel.2012.06.017

    Article  Google Scholar 

  88. Martin, S. W., 1965. Glacial Lakes in the Bolivian Andes. The Geographical Journal, 131(4): 519–526. https://doi.org/10.2307/1792721

    Article  Google Scholar 

  89. Masiokas, M. H., Christie, D. A., Le-Quesne, C., et al., 2016. Reconstructing the Annual Mass Balance of the Echaurren Norte Glacier (Central Andes, 33.5°S) Using Local and Regional Hydroclimatic Data. The Cryosphere, 10(2): 927–940. https://doi.org/10.5194/tc-10-927-2016

    Article  Google Scholar 

  90. Matta, E., Giardino, C., Boggero, A., et al., 2017. Use of Satellite and in situ Reflectance Data for Lake Water Color Characterization in the Everest Himalayan Region. Mountain Research and Development, 37(1): 16–23. https://doi.org/10.1659/mrd-journal-d-15-00052.1

    Article  Google Scholar 

  91. McKillop, R. J., Clague, J. J., 2007. Statistical, Remote Sensing-Based Approach for Estimating the Probability of Catastrophic Drainage from Moraine-Dammed Lakes in Southwestern British Columbia. Global and Planetary Change, 56(1/2): 153–171. https://doi.org/10.1016/j.gloplacha.2006.07.004

    Article  Google Scholar 

  92. Meerhoff, E., Castro, L. R., Tapia, F. J., et al., 2019. Hydrographic and Biological Impacts of a Glacial Lake Outburst Flood (GLOF) in a Patagonian Fjord. Estuaries and Coasts, 42(1): 132–143. https://doi.org/10.1007/s12237-018-0449-9

    Article  Google Scholar 

  93. Mergili, M., Emmer, A., Juricova, A., et al., 2018. How Well can we Simulate Complex Hydro-Geomorphic Process Chains? The 2012 Multi-Lake Outburst Flood in the Santa Cruz Valley (Cordillera Blanca, Perú). Earth Surface Processes and Landforms, 43(7): 1373–1389. https://doi.org/10.1002/esp.4318

    Article  Google Scholar 

  94. Mergili, M., Pudasaini, S. P., Emmer, A., et al., 2020. Reconstruction of the 1941 GLOF Process Chain at Lake Palcacocha (Cordillera Blanca, Peru). Hydrology and Earth System Sciences, 24(1): 93–114. https://doi.org/10.5194/hess-24-93-2020

    Article  Google Scholar 

  95. Mernild, S. H., Beckerman, A. P., Yde, J. C., et al., 2015. Mass Loss and Imbalance of Glaciers along the Andes Cordillera to the Sub-Antarctic Islands. Global and Planetary Change, 133(B9): 109–119. https://doi.org/10.1016/j.gloplacha.2015.08.009

    Article  Google Scholar 

  96. Michelutti, N., Wolfe, A. P., Cooke, C. A., et al., 2015. Climate Change Forces New Ecological States in Tropical Andean Lakes. PLoS ONE, 10(2): e0115338. https://doi.org/10.1371/journal.pone.0115338

    Article  Google Scholar 

  97. Michelutti, N., Tapia, P. M., Labaj, A. L., et al., 2019. A Limnological Assessment of the Diverse Waterscape in the Cordillera Vilcanota, Peruvian Andes. Inland Waters, 9(3): 395–407. https://doi.org/10.1080/20442041.2019.1582959

    Article  Google Scholar 

  98. Milan, R., Rignot, E., Rivera, A., et al., 2019. Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields. Geophysical Research Letters, 46: 6626–6635. https://doi.org/10.1029/2019gl082485

    Article  Google Scholar 

  99. Mulsow, C., Koschitzki, R., Maas, H. G., 2013. Photogrammetric Monitoring of Glacier Margin Lakes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40-5/W3, The Role of Geomatics in Hydrogeological Risk. Feb. 7–28, 2013, Padua. 1–6

  100. Palmer, J., 2017. Chile’s Glacial Lakes Pose Newly Recognized Flood Threat. Science, 355(6329): 1004–1005. https://doi.org/10.1126/science.355.6329.1004

    Article  Google Scholar 

  101. Pasquini, A. I., Depetris, P. J., 2011. Southern Patagonia’s Perito Moreno Glacier, Lake Argentino, and Santa Cruz River Hydrological System: An Overview. Journal of Hydrology, 405(1/2): 48–56. https://doi.org/10.1016/j.jhydrol.2011.05.009

    Article  Google Scholar 

  102. Paul, F., Mölg, N., 2014. Hasty Retreat of Glaciers in Northern Patagonia from 1985 to 2011. Journal of Glaciology, 60(224): 1033–1043. https://doi.org/10.3189/2014jog14j104

    Article  Google Scholar 

  103. Pepin, N., Bradley, R. S., Diaz, H. F., et al., 2015. Elevation-Dependent Warming in Mountain Regions of the World. Nature Climate Change, 5: 424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  104. Pitte, L. P., 2014. Fluctuaciones de los Glaciares, en los Últimos 50 años, en las Cuencas Amarillo, Turbio, Canito y Potrerillos, San Juan, Argentina: [Dissertation]. National University of Córdoba, Córdoba

    Google Scholar 

  105. Pizarro, J., Vergara, P. M., Cerda, S., et al., 2016. Cooling and Eutrophication of Southern Chilean Lakes. Science of the Total Environment, 541(6): 683–691. https://doi.org/10.1016/j.scitotenv.2015.09.105

    Article  Google Scholar 

  106. Portocarrero-Rodriguez, C. A., 2013. Safety Measures for Dangerous Glacial Lakes in the Cordillera Blanca, Peru. U.S. Agency for International Development 1300 Pennsylvania Avenue, Washington DC, USA

    Google Scholar 

  107. Pradhan, N. S., Bajracharya, N., Bajracharya, S. R., et al., 2016. Community-Based Flood Early Warning System: Resource Manual. International Centre for Integrated Mountain Development, Kathmandu

    Google Scholar 

  108. Rabatel, A., Francou, B., Soruco, A., et al., 2013. Current State of Glaciers in the Tropical Andes: A Multi-Century Perspective on Glacier Evolution and Climate Change. The Cryosphere, 7: 81–102. https://doi.org/10.5194/tc-7-81-2013

    Article  Google Scholar 

  109. Racoviteanu, A. E., Arnaud, Y., Williams, M. W., et al., 2008. Decadal Changes in Glacier Parameters in the Cordillera Blanca, Peru, Derived from Remote Sensing. Journal of Glaciology, 54(186): 499–510. https://doi.org/10.3189/002214308785836922

    Article  Google Scholar 

  110. Reynolds, J. M., 1992. The Identification and Mitigation of Glacier-Related Hazards: Examples from the Cordillera Blanca, Peru. In: McCall, G. J. H., Laming, D. J. C., Scott, S. C., eds., Geohazards. Chapman and Hall, London. 143–157

    Google Scholar 

  111. Reynolds, J. M., 2000. On the Formation of Supraglacial Lakes on Debris-Covered Glaciers. In: Nakawo, M., Raymond, C. F., Fountain, A., eds., Debris-Covered Glaciers. IAHS Publication 264, IAHS Press, Wallingford. 153–161

    Google Scholar 

  112. Rignot, E., Rivera, A., Casassa, G., 2003. Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science, 302(5644): 434–437. https://doi.org/10.1126/science.1087393

    Article  Google Scholar 

  113. Richardson, S. D., Reynolds, J. M., 2000. An Overview of Glacial Hazards in the Himalayas. Quaternary International, 65/66(37): 31–47. https://doi.org/10.1016/s1040-6182(99)00035-x

    Article  Google Scholar 

  114. Rivera, A., Casassa, G., 2004. Ice Elevation, Areal, and Frontal Changes of Glaciers from National Park Torres Del Paine, Southern Patagonia Icefield. Arctic, Antarctic, and Alpine Research, 36(4): 379–389. https://doi.org/10.1657/1523-0430(2004)036[0379:ieaafc]2.0.co;2

    Article  Google Scholar 

  115. Ross, L., Santos, I. P., Castro, L., et al., 2015. Response of Zooplankton Abundance to Internal Motions and a Glacial Lake Outburst Flood in a Patagonian Fjord. Proceedings of Rio Acoustics 2015, Rio de Janeiro

  116. Ruiz Pereira, S. F., Veettil, B. K., 2019. Glacier Decline in the Central Andes (33°S): Context and Magnitude from Satellite and Historical Data. Journal of South American Earth Sciences, 94(2): 102249. https://doi.org/10.1016/j.jsames.2019.102249

    Article  Google Scholar 

  117. Schoolmeester, T., Johansen, K. S., Alfthan, B., et al., 2018. The Andean Glacier and Water Atlas: The Impact of Glacier Retreat on Water Resources. UNESCO, Paris and GRID, Arendal

    Google Scholar 

  118. Stansell, N. D., Rodbell, D. T., Abbott, M. B., et al., 2013. Proglacial Lake Sediment Records of Holocene Climate Change in the Western Cordillera of Peru. Quaternary Science Reviews, 70(21): 1–14. https://doi.org/10.1016/j.quascirev.2013.03.003

    Article  Google Scholar 

  119. Somos-Valenzuela, M. A., Chisolm, R. E., Rivas, D. S., et al., 2016. Modeling a Glacial Lake Outburst Flood Process Chain: The Case of Lake Palcacocha and Huaraz, Peru. Hydrology and Earth System Sciences, 20(6): 2519–2543. https://doi.org/10.5194/hess-20-2519-2016

    Article  Google Scholar 

  120. Sugiyama, S., Minowa, M., Sakakibara, D., et al., 2016. Thermal Structure of Proglacial Lakes in Patagonia. Journal of Geophysical Research: Earth Surface, 121: 2270–2286. https://doi.org/10.1002/2016jf004084

    Google Scholar 

  121. Thorndycraft, V. R., Bendle, J. M., Benito, G., et al., 2019. Glacial Lake Evolution and Atlantic-Pacific Drainage Reversals during Deglaciation of the Patagonia Ice Sheet. Quaternary Science Reviews, 203: 102–127. https://doi.org/10.1016/j.quascirev.2018.10.036

    Article  Google Scholar 

  122. UGRH, 2014. Inventario de Lagunas Glaciares del Peru. Unidad de Glaciologia y Recursos Hidricos, Autoridad Nacional del Agua (ANA), Huaraz

    Google Scholar 

  123. Urbanski, J. A., Wochna, A., Bubak, I., et al., 2016. Application of Landsat 8 Imagery to Regional-Scale Assessment of Lake Water Quality. International Journal of Applied Earth Observation and Geoinformation, 51(4): 28–36. https://doi.org/10.1016/j.jag.2016.04.004

    Article  Google Scholar 

  124. USAID, 2014. The Glacial Lake Handbook: Reducing Risk from Dangerous Glacial Lakes in the Cordillera Blanca, Peru. United States Agency for International Development, Washington, D.C.

    Google Scholar 

  125. Van Colen, W. R., Mosquera, P., Vanderstukken, M., et al., 2017. Limnology and Trophic Status of Glacial Lakes in the Tropical Andes (Cajas National Park, Ecuador). Freshwater Biology, 62(3): 458–473. https://doi.org/10.1111/fwb.12878

    Article  Google Scholar 

  126. Vargas, T. D., 1942. Informe Preliminar Sobre Algunas Lagunas de la Cordillera Blanca. Lima, Octubre. Doc #. I-GEOL-003, Biblioteca, Unidad de Glaciología y Recursos Hídricos, Huaraz

    Google Scholar 

  127. Veettil, B. K., Kamp, U., 2017. Remote Sensing of Glaciers in the Tropical Andes: A Review. International Journal of Remote Sensing, 38(23): 7101–7137. https://doi.org/10.1080/01431161.2017.1371868

    Article  Google Scholar 

  128. Veettil, B. K., Kamp, U., 2019. Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences, 9(5): 196. https://doi.org/10.3390/geosciences9050196

    Article  Google Scholar 

  129. Veettil, B. K., Bianchini, N., de Andrade, A. M., et al., 2016. Glacier Changes and Related Glacial Lake Expansion in the Bhutan Himalaya, 1990–2010. Regional Environmental Change, 16(5): 1267–1278. https://doi.org/10.1007/s10113-015-0853-7

    Article  Google Scholar 

  130. Veettil, B. K., Souza, S. F., Simões, J. C., et al., 2017a. Decadal Evolution of Glaciers and Glacial Lakes in the Apolobamba-Carabaya Region, Tropical Andes (Bolivia-Peru). Geografiska Annaler: Series A, Physical Geography, 99(3): 193–206. https://doi.org/10.1080/04353676.2017.1299577

    Article  Google Scholar 

  131. Veettil, B. K., Wang, S. S., Souza, S. F., et al., 2017b. Glacier Monitoring and Glacier-Climate Interactions in the Tropical Andes: A Review. Journal of South American Earth Sciences, 77(D5): 218–246. https://doi.org/10.1016/j.jsames.2017.04.009

    Article  Google Scholar 

  132. Vilímek, V., Klimeš, J., Emmer, A., et al., 2015. Geomorphologic Impacts of the Glacial Lake Outburst Flood from Lake No. 513 (Peru). Environmental Earth Sciences, 73(9): 5233–5244. https://doi.org/10.1007/s12665-014-3768-6

    Article  Google Scholar 

  133. Vilímek, V., Klimeš, J., Červená, L., 2016. Glacier-Related Landforms and Glacial Lakes in Huascarán National Park, Peru. Journal of Maps, 12(1): 193–202. https://doi.org/10.1080/17445647.2014.1000985

    Article  Google Scholar 

  134. Vuille, M., 2013. Climate Change and Water Resources in the Tropical Andes. Inter-American Development Bank, IDB-TN-515

  135. Vuille, M., Bradley, R. S., Werner, M., et al., 2003. 20th Century Climate Change in the Tropical Andes: Observations and Model Results. Climatic Change, 59: 75–99. https://doi.org/10.1023/a:1024406427519

    Article  Google Scholar 

  136. Vuille, M., Francou, B., Wagnon, P., et al., 2008. Climate Change and Tropical Andean Glaciers: Past, Present and Future. Earth-Science Reviews, 89(3/4): 79–96. https://doi.org/10.1016/j.earscirev.2008.04.002

    Article  Google Scholar 

  137. Vuille, M., Carey, M., Huggel, C., et al., 2017. Rapid Decline of Snow and Ice in the Tropical Andes: Impacts, Uncertainties and Challenges Ahead. Earth Science Reviews, 176: 195–213. https://doi.org/10.1016/j.earscirev.2017.09.019

    Article  Google Scholar 

  138. Wang, X. Y., Yang, W., 2019. Water Quality Monitoring and Evaluation Using Remote Sensing Techniques in China: A Systematic Review. Ecosystem Health and Sustainability, 5(1): 47–56. https://doi.org/10.1080/20964129.2019.1571443

    Article  Google Scholar 

  139. Warner, K., Aff, T., Henry, K., et al., 2012. Where the Rain Falls: Climate Change, Food and Livelihood Security, and Migration. Global Policy Report of the Where the Rain Falls Project. CARE France and UNU-EHS, Bonn

    Google Scholar 

  140. Westoby, M. J., Glasser, N. F., Brasington, J., et al., 2014. Modelling Outburst Floods from Moraine-Dammed Glacial Lakes. Earth-Science Reviews, 134(F2): 137–159. https://doi.org/10.1016/j.earscirev.2014.03.009

    Article  Google Scholar 

  141. Wigmore, O., 2016. Assessing Spatiotemporal Variability in Glacial Watershed Hydrology: Integrating Unmanned Aerial Vehicles and Field Hydrology, Cordillera Blanca, Peru: [Dissertation]. Ohio State University, Columbus

    Google Scholar 

  142. Wigmore, O., Mark, B., 2016. UAV Mapping of Debris Covered Glacier Change, Llaca Glacier, Cordillera Blanca, Peru. Proceedings of the 73rd Eastern Snow Conference 2016, Columbus. 1–10

  143. Wigmore, O., Mark, B., 2017. Monitoring Tropical Debris-Covered Glacier Dynamics from High-Resolution Unmanned Aerial Vehicle Photogrammetry, Cordillera Blanca, Peru. The Cryosphere, 11(6): 2463–2480. https://doi.org/10.5194/tc-11-2463-2017

    Article  Google Scholar 

  144. Wigmore, O., Mark, B., 2018. High Altitude Kite Mapping: Evaluation of Kite Aerial Photography (KAP) and Structure from Motion Digital Elevation Models in the Peruvian Andes. International Journal of Remote Sensing, 39(15/16): 4995–5015. https://doi.org/10.1080/01431161.2017.1387312

    Article  Google Scholar 

  145. Wigmore, O., Mark, B., McKenzie, J., et al., 2019. Sub-Metre Mapping of Surface Soil Moisture in Proglacial Valleys of the Tropical Andes Using a Multispectral Unmanned Aerial Vehicle. Remote Sensing of Environment, 222: 104–118. https://doi.org/10.1016/j.rse.2018.12.024

    Article  Google Scholar 

  146. Wilson, R., Glasser, N. F., Reynolds, J. M., et al., 2018. Glacial Lakes of the Central and Patagonian Andes. Global and Planetary Change, 162(1–4): 275–291. https://doi.org/10.1016/j.gloplacha.2018.01.004

    Article  Google Scholar 

  147. Wilson, R., Harrison, S., Reynolds, J., et al., 2019. The 2015 Chileno Valley Glacial Lake Outburst Flood, Patagonia. Geomorphology, 332(1–4): 51–65. https://doi.org/10.1016/j.geomorph.2019.01.015

    Article  Google Scholar 

  148. WMO, 2010. Guidelines in Early Warning Systems and Application of Nowcasting and Warning Operations. World Meteorological Organization, WMO/TD 1559, Geneva

    Google Scholar 

  149. Worni, R., Stoffel, M., Huggel, C., et al., 2012. Analysis and Dynamic Modeling of a Moraine Failure and Glacier Lake Outburst Flood at Ventisquero Negro, Patagonian Andes (Argentina). Journal of Hydrology, 444/445(2–4): 134–145. https://doi.org/10.1016/j.jhydrol.2012.04.013

    Article  Google Scholar 

  150. Worni, R., Huggel, C., Clague, J. J., et al., 2014. Coupling Glacial Lake Impact, Dam Breach, and Flood Processes: A Modeling Perspective. Geomorphology, 224: 161–176. https://doi.org/10.1016/j.geomorph.2014.06.031

    Article  Google Scholar 

  151. Worni, R., Huggel, C., Stoffel, M., 2013. Glacial Lakes in the Indian Himalayas—from an Area-Wide Glacial Lake Inventory to On-site and Modeling Based Risk Assessment of Critical Glacial Lakes. Science of the Tota: Environment, 468/469: S71–S84. https://doi.org/10.1016/j.scitotenv.2012.11.043

    Article  Google Scholar 

  152. Yamada, T., Sharma, C. K., 1993. Glacier Lakes and Outburst Floods in the Nepal Himalaya. Proceedings of the Kathmandu Symposium Snow and Glacier Hydrology, November 1992, IAHS Publ. 218. 319–330

  153. Yan, H. M., Yao, Z. J., Huang, H. Q., et al., 2013. Water Quality and Light Absorption Attributes of Glacial Lakes in Mount Qomolangma Region. Journal of Geographical Sciences, 23(5): 860–870. https://doi.org/10.1007/s11442-013-1049-z

    Article  Google Scholar 

  154. Yao, X. J., Liu, S. Y., Sun, M. P., et al., 2012. Volume Calculation and Analysis of the Changes in Moraine-Dammed Lakes in the North Himalaya: A Case Study of Longbasaba Lake. Journal of Glaciology, 58(210): 753–760. https://doi.org/10.3189/2012jog11j048

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Samuel Nussbaumer for providing the photograph of a proglacial lake in Chile. The anonymous reviewers and editors are thanked for their helpful comments. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1118-z.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bijeesh Kozhikkodan Veettil.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veettil, B.K., Kamp, U. Glacial Lakes in the Andes under a Changing Climate: A Review. J. Earth Sci. (2021). https://doi.org/10.1007/s12583-020-1118-z

Download citation

Key Words

  • Andes
  • glacial change
  • glacial lake
  • glacial lake outburst flood
  • remote sensing
  • water pollution