Skip to main content

Revisiting Rhenium-Osmium Isotopic Investigations of Petroleum Systems: From Geochemical Behaviours to Geological Interpretations

Abstract

Recent decades have witnessed an increasing number of studies investigating petroleum systems with the application of rhenium-osmium (Re-Os) isotopic geochemistry. Here, we review the use of the 187Re-187Os geochronometer with respect to the geochemical behaviour of rhenium and osmium in hydrocarbon-related geological processes. The Re-Os budget in hydrocarbon source rock predominantly originates from natural water columns during its deposition. Open seawater tends to have a homogeneous Os isotopic composition because its residence time in seawater is longer than the time taken for ocean mixing. On the contrary, restricted water bodies (e.g., lakes) may have heterogeneous Os isotopic compositions due to the greater amount of terrigenous input. Hydrogenous Re and Os atoms are sequestered from the water body into sedimentary organic matter and transferred into crude oil through thermal maturation of organic matter. Thermal maturation likely does not significantly alter the Re-Os isotopic systematics of the source rock as a Re-Os isochron age of 442±21 Ma (2σ) is yielded in this study for over matured source rocks within the Silurian Longmaxi Formation from the Sichuan Basin. Re-Os atoms are mainly hosted by the highly polar/aggregating/aromatic asphaltenes in hydrocarbons, possibly chelating with organic complexes or occurring as metalloporphyrins. Resin and aromatic hydrocarbons also contribute to the Re-Os budget, but are 2 to 3 orders of magnitude lower than that of asphaltenes, whereas saturates do not contain appreciable Re-Os contents. The distribution of Re-Os atoms in hydrocarbons is heterogeneous because the duplicate analysis of pure single bitumen samples yields similar 187Os/188Os ratios whereas variable 187Re/188Os ratios. The Re-Os system in crude oils can be reset during transport away from the source rocks, with Os-rich organic fractions more readily expelled than Re-rich fractions. Contact with metal-rich fluids (e.g., hydrothermal fluid) or compositional changes related to asphaltene contents (e.g., deasphalting, biodegradation, thermal cracking and thermochemical sulphate reduction) are also likely to alter the Re-Os systematics in hydrocarbons. These geochemical features enable the 187Re-187Os isotopic system to have robust applicability for petroleum system investigations, which may use the Re-Os radiometric tool for: (1) stratigraphic correlation of source rocks; (2) dating geological events altering the asphaltene content in hydrocarbon such as hydrocarbon generation, thermochemical sulphate reduction, etc., and; (3) fingerprinting hydrocarbons. Regardless of the robustness of the 187Re-187Os geochronometer for petroleum system investigations, there are several pending questions such as partitioning between solid organic species or between organic matter and sulphide, chelating sites in hydrocarbons and Os isotopic equilibration between hydrocarbon subfractions. To improve the understanding of the Re-Os behaviour in petroleum systems, we underscore multi-proxies-based geochemistry (e.g., inorganic-organic geochemistry) and experimental studies (e.g., hydrous pyrolysis).

This is a preview of subscription content, access via your institution.

References Cited

  1. Alessandrello, A., Beeman, J. W., Brofferio, C., et al., 1999. Bolometric Measurements of Beta Decay Spectra of 187Re with Crystals of Silver Perrhenate. Physics Letters B, 457(1/2/3): 253–260. https://doi.org/10.1016/s0370-2693(99)00519-5

    Article  Google Scholar 

  2. Allègre, C. J., Luck, J. M., 1980. Osmium Isotopes as Petrogenetic and Geological Tracers. Earth and Planetary Science Letters, 48(1): 148–154. https://doi.org/10.1016/0012-821x(80)90177-6

    Article  Google Scholar 

  3. Arnaboldi, C., Brofferio, C., Cremonesi, O., et al., 2003. Bolometric Bounds on the Antineutrino Mass. Physical Review Letters, 91(16): 161802. https://doi.org/10.1103/PhysRevLett.91.161802

    Article  Google Scholar 

  4. Ashktorab, K., Jänecke, J. W., Becchetti, F. D., 1993. Beta Decay of 187Re and Cosmochronology. Physical Review C, 47(6): 2954–2960. https://doi.org/10.1103/physrevc.47.2954

    Article  Google Scholar 

  5. Berner, R. A., 1984. Sedimentary Pyrite Formation: An Update. Geochimica et Cosmochimica Acta, 48(4): 605–615. https://doi.org/10.1016/0016-7037(84)90089-9

    Article  Google Scholar 

  6. Brodzinski, R. L., Conway, D. C., 1965. Decay of Rhenium-187. Physical Review, 138(6b): B1368–B1371. https://doi.org/10.1103/physrev.138.b1368

    Article  Google Scholar 

  7. Campbell-Miller, M. D., Simard, B., 1996. First Ionization Potentials of Tungsten and Rhenium by Mass-Selected Double-Resonance Ionization Spectroscopy. Journal of the Optical Society of America B, 13(10): 2115. https://doi.org/10.1364/josab.13.002115

    Article  Google Scholar 

  8. Chen, X., Fan, J.-X., Zhang, Y.-D., et al., 2015. Subdivision and Delineation of the Wufeng and Lungmachi Black Shales in the Subsurface of the Yangtze Platform. Journal of Stratigraphy, 39(4): 351–358 (in Chinese with English Abstract)

    Google Scholar 

  9. Cohen, A. S., 2004. The Rhenium-Osmium Isotope System: Applications to Geochronological and Palaeoenvironmental Problems. Journal of the Geological Society, 161(4): 729–734. https://doi.org/10.1144/0016-764903-084

    Article  Google Scholar 

  10. Cohen, A. S., Coe, A. L., Bartlett, J. M., et al., 1999. Precise Re-Os Ages of Organic-Rich Mudrocks and the Os Isotope Composition of Jurassic Seawater. Earth and Planetary Science Letters, 167(3/4): 159–173. https://doi.org/10.1016/s0012-821x(99)00026-6

    Article  Google Scholar 

  11. Cohen, A. S., Coe, A. L., Harding, S. M., et al., 2004. Osmium Isotope Evidence for the Regulation of Atmospheric CO2 by Continental Weathering. Geology, 32(2): 157–160. https://doi.org/10.1130/g20158.1

    Article  Google Scholar 

  12. Creaser, R. A., Papanastassiou, D. A., Wasserburg, G. J., 1991. Negative Thermal Ion Mass Spectrometry of Osmium, Rhenium and Iridium. Geochimica et Cosmochimica Acta, 55(1): 397–401. https://doi.org/10.1016/0016-7037(91)90427-7

    Article  Google Scholar 

  13. Creaser, R. A., Sannigrahi, P., Chacko, T., et al., 2002. Further Evaluation of the Re-Os Geochronometer in Organic-Rich Sedimentary Rocks: A Test of Hydrocarbon Maturation Effects in the Exshaw Formation, Western Canada Sedimentary Basin. Geochimica et Cosmochimica Acta, 66(19): 3441–3452. https://doi.org/10.1016/s0016-7037(02)00939-0

    Article  Google Scholar 

  14. Cumming, V. M., Selby, D., Lillis, P. G., 2012. Re-Os Geochronology of the Lacustrine Green River Formation: Insights into Direct Depositional Dating of Lacustrine Successions, Re-Os Systematics and Paleocontinental Weathering. Earth and Planetary Science Letters, 359–360: 194–205. https://doi.org/10.1016/j.epsl.2012.10.012

    Article  Google Scholar 

  15. Cumming, V. M., Selby, D., Lillis, P. G., et al., 2014. Re-Os Geochronology and Os Isotope Fingerprinting of Petroleum Sourced from a Type I Lacustrine Kerogen: Insights from the Natural Green River Petroleum System in the Uinta Basin and Hydrous Pyrolysis Experiments. Geochimica et Cosmochimica Acta, 138: 32–56. https://doi.org/10.1016/j.gca.2014.04.016

    Article  Google Scholar 

  16. DiMarzio, J. M., Georgiev, S. V., Stein, H. J., et al., 2018. Residency of Rhenium and Osmium in a Heavy Crude Oil. Geochimica et Cosmochimica Acta, 220: 180–200. https://doi.org/10.1016/j.gca.2017.09.038

    Article  Google Scholar 

  17. Douglas, D. J., French, J. B., 1981. Elemental Analysis with a Microwave-Induced Plasma/Quadrupole Mass Spectrometer System. Analytical Chemistry, 53(1): 37–41. https://doi.org/10.1021/ac00224a011

    Article  Google Scholar 

  18. Faure, G., Mensing, T. M., 2005. Isotopes: Principles and Applications. John Wiley & Sons Inc. Hoboken

    Google Scholar 

  19. Fehn, U., Teng, R., Elmore, D., et al., 1986. Isotopic Composition of Osmium in Terrestrial Samples Determined by Accelerator Mass Spectrometry. Nature, 323(6090): 707–710. https://doi.org/10.1038/323707a0

    Article  Google Scholar 

  20. Finlay, A. J., Selby, D., Osborne, M. J., 2011. Re-Os Geochronology and Fingerprinting of United Kingdom Atlantic Margin Oil: Temporal Implications for Regional Petroleum Systems. Geology, 39(5): 475–478. https://doi.org/10.1130/g31781.1

    Article  Google Scholar 

  21. Finlay, A. J., Selby, D., Osborne, M. J., 2012. Petroleum Source Rock Identification of United Kingdom Atlantic Margin Oil Fields and the Western Canadian Oil Sands Using Platinum, Palladium, Osmium and Rhenium: Implications for Global Petroleum Systems. Earth and Planetary Science Letters, 313/314: 95–104. https://doi.org/10.1016/j.epsl.2011.11.003

    Article  Google Scholar 

  22. Finlay, A. J., Selby, D., Osborne, M. J., et al., 2010. Fault-Charged Mantle-Fluid Contamination of United Kingdom North Sea Oils: Insights from Re-Os Isotopes: Figure 1. Geology, 38(11): 979–982. https://doi.org/10.1130/g31201.1

    Article  Google Scholar 

  23. Galeazzi, M., Fontanelli, F., Gatti, F., et al., 2000. End-Point Energy and Half-Life of The 187Re β Decay. Physical Review C, 63(1): 014302. https://doi.org/10.1103/physrevc.63.014302

    Article  Google Scholar 

  24. Gao, S., Rudnick, R. L., Carlson, R. W., et al., 2002. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3/4): 307–322. https://doi.org/10.1016/s0012-821x(02)00489-2

    Article  Google Scholar 

  25. Ge, X., Shen, C. B., Selby, D., et al., 2016. Apatite Fission-Track and Re-Os Geochronology of the Xuefeng Uplift, China: Temporal Implications for Dry Gas Associated Hydrocarbon Systems. Geology, 44(6): 491–494. https://doi.org/10.1130/g37666.1

    Article  Google Scholar 

  26. Ge, X., Shen, C. B., Selby, D., et al., 2018a. Neoproterozoic-Cambrian Petroleum System Evolution of the Micang Shan Uplift, Northern Sichuan Basin, China: Insights from Pyrobitumen Rhenium-Osmium Geochronology and Apatite Fission-Track Analysis. AAPG Bulletin, 102(8): 1429–1453. https://doi.org/10.1306/1107171616617170

    Article  Google Scholar 

  27. Ge, X., Shen, C. B., Selby, D., et al., 2018b. Petroleum-Generation Timing and Source in the Northern Longmen Shan Thrust Belt, Southwest China: Implications for Multiple Oil-Generation Episodes and Sources. AAPG Bulletin, 102(5): 913–938. https://doi.org/10.1306/0711171623017125

    Article  Google Scholar 

  28. Geboy, N. J., Kaufman, A. J., Walker, R. J., et al., 2013. Re-Os Age Constraints and New Observations of Proterozoic Glacial Deposits in the Vazante Group, Brazil. Precambrian Research, 238: 199–213. https://doi.org/10.1016/j.precamres.2013.10.010

    Article  Google Scholar 

  29. Georgiev, S. V., Stein, H. J., Hannah, J. L., et al., 2016. Re-Os Dating of Maltenes and Asphaltenes within Single Samples of Crude Oil. Geochimica et Cosmochimica Acta, 179: 53–75. https://doi.org/10.1016/j.gca.2016.01.016

    Article  Google Scholar 

  30. Georgiev, S., Stein, H. J., Hannah, J. L., et al., 2011. Hot Acidic Late Permian Seas Stifle Life in Record Time. Earth and Planetary Science Letters, 310(3/4): 389–400. https://doi.org/10.1016/j.epsl.2011.08.010

    Article  Google Scholar 

  31. Gradstein, F. M., Ogg, J. G., Schmitz, M., et al., 2012. The Geologic Time Scale 2012. Elsevier. https://doi.org/10.4095/215638.

  32. Gray, A. L., 1985. The ICP as an Ion Source—Origins, Achievements and Prospects. Spectrochimica Acta Part B: Atomic Spectroscopy, 40(10/11/12): 1525–1537. https://doi.org/10.1016/0584-8547(85)80176-2

    Article  Google Scholar 

  33. Gregoire, D. C., 1990. Sample Introduction Techniques for the Determination of Osmium Isotope Ratios by Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 62(2): 141–146. https://doi.org/10.1021/ac00201a011

    Article  Google Scholar 

  34. Grice, K., Nabbefeld, B., Maslen, E., 2007. Source and Significance of Selected Polycyclic Aromatic Hydrocarbons in Sediments (Hovea-3 Well, Perth Basin, Western Australia) Spanning the Permian-Triassic Boundary. Organic Geochemistry, 38(11): 1795–1803. https://doi.org/10.1016/j.orggeochem.2007.07.001

    Article  Google Scholar 

  35. Guo, T. L., 2015. The Fuling Shale Gas Field—A Highly Productive Silurian Gas Shale with High Thermal Maturity and Complex Evolution History, Southeastern Sichuan Basin, China. Interpretation, 3(2): SJ25–SJ34. https://doi.org/10.1190/int-2014-0148.1

    Article  Google Scholar 

  36. Halliday, A. N., Lee, D. C., Christensen, J. N., et al., 1995. Recent Developments in Inductively Coupled Plasma Magnetic Sector Multiple Collector Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, 146/147: 21–33. https://doi.org/10.1016/0168-1176(95)04200-5

    Article  Google Scholar 

  37. Halliday, A. N., Lee, D. C., Christensen, J. N., et al., 1998. Applications of Multiple Collector-ICPMS to Cosmochemistry, Geochemistry, and Paleoceanography. Geochimica et Cosmochimica Acta, 62(6): 919–940. https://doi.org/10.1016/s0016-7037(98)00057-x

    Article  Google Scholar 

  38. Hannah, J. L., Bekker, A., Stein, H. J., et al., 2004. Primitive Os and 2 316 Ma Age for Marine Shale: Implications for Paleoproterozoic Glacial Events and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 225(1/2): 43–52. https://doi.org/10.1016/j.epsl.2004.06.013

    Article  Google Scholar 

  39. Hanson, A., Zhang, S., Moldowan, J., et al., 2000. Molecular Organic Geochemistry of the Tarim Basin, Northwest China. AAPG Bulletin, 84(8): 1109–1128. https://doi.org/10.1306/a9673c52-1738-11d7-8645000102c1865d

    Google Scholar 

  40. Hassler, D. R., Peucker-Ehrenbrink, B., Ravizza, G. E., 2000. Rapid Determination of Os Isotopic Composition by Sparging OsO4 into a Magnetic-Sector ICP-MS. Chemical Geology, 166(1/2): 1–14. https://doi.org/10.1016/s0009-2541(99)00180-1

    Article  Google Scholar 

  41. Herr, W., Hintenberger, H., Voshage, H., 1954. Half-Life of Rhenium. Physical Review, 95(6): 1691–1691. https://doi.org/10.1103/physrev.95.1691

    Article  Google Scholar 

  42. Hirata, T., 2000. Development of a Flushing Spray Chamber for Inductively Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 15(11): 1447–1450. https://doi.org/10.1039/b006626p

    Article  Google Scholar 

  43. Hirt, B., Herr, W., Hoffmeister, W., 1963. Age Determinations by the Rhenium-Osmium Method. Radioactive Dating, 35–43

  44. Hoffman, E. L., Naldrett, A. J., Van Loon, J. C., et al., 1978. The Determination of All the Platinum Group Elements and Gold in Rocks and Ore by Neutron Activation Analysis after Preconcentration by a Nickel Sulphide Fire-Assay Technique on Large Samples. Analytica Chimica Acta, 102: 157–166. https://doi.org/10.1016/s0003-2670(01)93469-5

    Article  Google Scholar 

  45. Houk, R. S., Fassel, V. A., Flesch, G. D., et al., 1980. Inductively Coupled Argon Plasma as an Ion Source for Mass Spectrometric Determination of Trace Elements. Analytical Chemistry, 52(14): 2283–2289. https://doi.org/10.1021/ac50064a012

    Article  Google Scholar 

  46. Huang, H. P., Zhang, S. C., Su, J., 2016. Palaeozoic Oil-Source Correlation in the Tarim Basin, NW China: A Review. Organic Geochemistry, 94: 32–46. https://doi.org/10.1016/j.orggeochem.2016.01.008

    Article  Google Scholar 

  47. Hurtig, N. C., Georgiev, S. V., Stein, H. J., et al., 2019. Re-Os Systematics in Petroleum during Water-Oil Interaction: The Effects of Oil Chemistry. Geochimica et Cosmochimica Acta, 247: 142–161. https://doi.org/10.1016/j.gca.2018.12.021

    Article  Google Scholar 

  48. Jaffe, L. A., Peucker-Ehrenbrink, B., Petsch, S. T., 2002. Mobility of Rhenium, Platinum Group Elements and Organic Carbon during Black Shale Weathering. Earth and Planetary Science Letters, 198(3/4): 339–353. https://doi.org/10.1016/s0012-821x(02)00526-5

    Article  Google Scholar 

  49. Kendall, B. S., Creaser, R. A., Ross, G. M., et al., 2004. Constraints on the Timing of Marinoan “Snowball Earth” Glaciation by 187Re-187Os Dating of a Neoproterozoic, Post-Glacial Black Shale in Western Canada. Earth and Planetary Science Letters, 222(3/4): 729–740. https://doi.org/10.1016/j.epsl.2004.04.004

    Article  Google Scholar 

  50. Kendall, B., Creaser, R. A., Gordon, G. W., et al., 2009a. Re-Os and Mo Isotope Systematics of Black Shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, Northern Australia. Geochimica et Cosmochimica Acta, 73(9): 2534–2558. https://doi.org/10.1016/j.gca.2009.02.013

    Article  Google Scholar 

  51. Kendall, B., Creaser, R. A., Selby, D., 2009b. 187Re-187Os Geochronology of Precambrian Organic-Rich Sedimentary Rocks. Geological Society, London, Special Publications, 326(1): 85–107. https://doi.org/10.1144/sp326.5

    Article  Google Scholar 

  52. Korsch, R., Huazhao, M., Zhaocai, S., et al., 1991. The Sichuan Basin, Southwest China: A Late Proterozoic (Sinian) Petroleum Province. Precambrian Research, 54(1): 45–63. https://doi.org/10.1016/0301-9268(91)90068-l

    Article  Google Scholar 

  53. Large, R. R., Bull, S. W., McGoldrick, P. J., et al., 2005. Stratiform and Strata-Bound Zn-Pb-Ag Deposits in Proterozoic Sedimentary Basins, Northern Australia. Economic Geology, 100: 931–963

    Google Scholar 

  54. Lawley, C., Selby, D., Imber, J., 2013. Re-Os Molybdenite, Pyrite, and Chalcopyrite Geochronology, Lupa Goldfield, Southwestern Tanzania: Tracing Metallogenic Time Scales at Midcrustal Shear Zones Hosting Orogenic Au Deposits. Economic Geology, 108(7): 1591–1613. https://doi.org/10.2113/econgeo.108.7.1591

    Article  Google Scholar 

  55. Le Métayer, P., Grice, K., Chow, C. N., et al., 2014. The Effect of Origin and Genetic Processes of Low Molecular Weight Aromatic Hydrocarbons in Petroleum on Their Stable Carbon Isotopic Compositions. Organic Geochemistry, 72: 23–33. https://doi.org/10.1016/j.orggeochem.2014.04.008

    Article  Google Scholar 

  56. Lewan, M., Spiro, B., Illich, H., et al., 1985. Evaluation of Petroleum Generation by hydrous Pyrolysis Experimentation [and Discussion]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 315(1531): 123–134. https://doi.org/10.1098/rsta.1985.0033

    Google Scholar 

  57. Li, J., Liang, X. R., Xu, J. F., et al., 2010. Simplified Technique for the Measurements of Re-Os Isotope by Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Geochemical Journal, 44(1): 73–80. https://doi.org/10.2343/geochemj.1.0044

    Article  Google Scholar 

  58. Li, S. J., Wang, X. C., Li, C. F., et al., 2019. Direct Rubidium-Strontium Dating of Hydrocarbon Charge Using Small Authigenic Illitic Clay Aliquots from the Silurian Bituminous Sandstone in the Tarim Basin, NW China. Scientific Reports, 9(1): 1–13. https://doi.org/10.1038/s41598-019-48988-3

    Google Scholar 

  59. Li, S. J., Wang, X. C., Li, C. F., et al., 2020. First Direct Dating of Alteration of Paleo-Oil Pools Using Rubidium-Strontium Pyrite Geochronology. Minerals, 10(7): 606. https://doi.org/10.3390/min10070606

    Article  Google Scholar 

  60. Li, S. M., Amrani, A., Pang, X. Q., et al., 2015. Origin and Quantitative Source Assessment of Deep Oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78: 1–22. https://doi.org/10.1016/j.orggeochem.2014.10.004

    Article  Google Scholar 

  61. Liang, X., Liu, S. G., Wang, S. B., et al., 2019. Analysis of the Oldest Carbonate Gas Reservoir in China—New Geological Significance of the Dengying Gas Reservoir in the Weiyuan Structure, Sichuan Basin. Journal of Earth Science, 30(2): 348–366. https://doi.org/10.1007/s12583-017-0962-y

    Article  Google Scholar 

  62. Lichte, F. E., Wilson, S. M., Brooks, R. R., et al., 1986. New Method for the Measurement of Osmium Isotopes Applied to a New Zealand Cretaceous/Tertiary Boundary Shale. Nature, 322(6082): 816–817. https://doi.org/10.1038/322816a0

    Article  Google Scholar 

  63. Lillis, P. G., Selby, D., 2013. Evaluation of the Rhenium-Osmium Geochronometer in the Phosphoria Petroleum System, Bighorn Basin of Wyoming and Montana, USA. Geochimica et Cosmochimica Acta, 118: 312–330. https://doi.org/10.1016/j.gca.2013.04.021

    Article  Google Scholar 

  64. Lindner, M., Leich, D. A., Borg, R. J., et al., 1986. Direct Laboratory Determination of the 187Re Half-Life. Nature, 320(6059): 246–248. https://doi.org/10.1038/320246a0

    Article  Google Scholar 

  65. Lindner, M., Leich, D. A., Price Russ, G., et al., 1989. Direct Determination of the Half-Life of 187Re. Geochimica et Cosmochimica Acta, 53(7): 1597–1606. https://doi.org/10.1016/0016-7037(89)90241-x

    Article  Google Scholar 

  66. Liu, J. J., Selby, D., Zhou, H. G., et al., 2019. Further Evaluation of the Re-Os Systematics of Crude Oil: Implications for Re-Os Geochronology of Petroleum Systems. Chemical Geology, 513: 1–22. https://doi.org/10.1016/j.chemgeo.2019.03.004

    Article  Google Scholar 

  67. Liu, K. Y., Eadington, P., 2005. Quantitative Fluorescence Techniques for Detecting Residual Oils and Reconstructing Hydrocarbon Charge History. Organic Geochemistry, 36(7): 1023–1036. https://doi.org/10.1016/j.orggeochem.2005.02.008

    Article  Google Scholar 

  68. Liu, S. G., Deng, B., Jansa, L., et al., 2018. Multi-Stage Basin Development and Hydrocarbon Accumulations: A Review of the Sichuan Basin at Eastern Margin of the Tibetan Plateau. Journal of Earth Science, 29(2): 307–325. https://doi.org/10.1007/s12583-017-0904-8

    Article  Google Scholar 

  69. Liu, Z. Y., Selby, D., Hackley, C.P., et al., 2020. Evidence of Wildfires and Elevated Atmospheric Oxygen at the Frasnian-Famennian Boundary in New York (USA): Implications for the Late Devonian Mass Extinction. GSA Bulletin, 132(9/10): 2043–2054. https://doi.org/10.1130/b35457.1

    Article  Google Scholar 

  70. Luck, J. M., Allègre, C. J., 1982. The Study of Molybdenites through The 187Re-187Os Chronometer. Earth and Planetary Science Letters, 61(2): 291–296. https://doi.org/10.1016/0012-821x(82)90060-7

    Article  Google Scholar 

  71. Luck, J. M., Allègre, C. J., 1983. 187Re-187Os Systematics in Meteorites and Cosmochemical Consequences. Nature, 302(5904): 130–132. https://doi.org/10.1038/302130a0

    Article  Google Scholar 

  72. Luck, J. M., Birck, J. L., Allegre, C. J., 1980. 187Re-187Os Systematics in Meteorites: Early Chronology of the Solar System and Age of the Galaxy. Nature, 283(5744): 256–259. https://doi.org/10.1038/283256a0

    Article  Google Scholar 

  73. Ludwig, K., 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Barkeley Geochronology Center, Barkeley

    Google Scholar 

  74. Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 506(7488): 307–315. https://doi.org/10.1038/nature13068

    Article  Google Scholar 

  75. Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights. Sedimentary Geology, 140(1/2): 143–175. https://doi.org/10.1016/s0037-0738(00)00176-7

    Article  Google Scholar 

  76. Magoon, L. B., Dow, W. G., 1994. The Petroleum System, In: Magoon, L. B., Dow, W. G., eds., The Petroleum System—From Source to Trap. AAPG Memoir, 60: 3–24. https://doi.org/10.1016/0920-4105(95)00059-3

  77. Mahdaoui, F., Michels, R., Reisberg, L., et al., 2015. Behavior of Re and Os during Contact between an Aqueous Solution and Oil: Consequences for the Application of the Re-Os Geochronometer to Petroleum. Geochimica et Cosmochimica Acta, 158: 1–21. https://doi.org/10.1016/j.gca.2015.02.009

    Article  Google Scholar 

  78. Mahdaoui, F., Reisberg, L., Michels, R., et al., 2013. Effect of the Progressive Precipitation of Petroleum Asphaltenes on the Re-Os Radioisotope System. Chemical Geology, 358: 90–100. https://doi.org/10.1016/j.chemgeo.2013.08.038

    Article  Google Scholar 

  79. Makishima, A., Nakamura, E., 2006. Determination of Os and Re Isotope Ratios at Subpicogram Levels Using MC-ICPMS with Solution Nebulization and Multiple Ion Counting. Analytical Chemistry, 78(11): 3794–3799. https://doi.org/10.1021/ac060183t

    Article  Google Scholar 

  80. Mao, J. W., Xie, G. Q., Bierlein, F., et al., 2008. Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt. Geochimica et Cosmochimica Acta, 72(18): 4607–4626. https://doi.org/10.1016/j.gca.2008.06.027

    Article  Google Scholar 

  81. McDaniel, D. K., Walker, R. J., Hemming, S. R., et al., 2004. Sources of Osmium to the Modern Oceans: New Evidence from the 190Pt-186Os System. Geochimica et Cosmochimica Acta, 68(6): 1243–1252. https://doi.org/10.1016/j.gca.2003.08.020

    Article  Google Scholar 

  82. McLimans, R. K., 1987. The Application of Fluid Inclusions to Migration of Oil and Diagenesis in Petroleum Reservoirs. Applied Geochemistry, 2(5/6): 585–603. https://doi.org/10.1016/0883-2927(87)90011-4

    Article  Google Scholar 

  83. Meisel, T., Fellner, N., Moser, J., 2003. A Simple Procedure for the Determination of Platinum Group Elements and Rhenium (Ru, Rh, Pd, Re, Os, Ir and Pt) Using ID-ICP-MS with an Inexpensive On-Line Matrix Separation in Geological and Environmental Materials. Journal of Analytical Atomic Spectrometry, 18(7): 720–726. https://doi.org/10.1039/b301754k

    Article  Google Scholar 

  84. Meisel, T., Moser, J., Fellner, N., et al., 2001. Simplified Method for the Determination of Ru, Pd, Re, Os, Ir and Pt in Chromitites and Other Geological Materials by Isotope Dilution ICP-MS and Acid Digestion. The Analyst, 126(3): 322–328. https://doi.org/10.1039/b007575m

    Article  Google Scholar 

  85. Morgan, J. W., Walker, R. J., 1989. Isotopic Determinations of Rhenium and Osmium in Meteorites by Using Fusion, Distillation and Ion-Exchange Separations. Analytica Chimica Acta, 222(1): 291–300. https://doi.org/10.1016/s0003-2670(00)81904-2

    Article  Google Scholar 

  86. Naldrett, S. N., Libby, W. F., 1948. Natural Radioactivity of Rhenium. Physical Review, 73(5): 487–493. https://doi.org/10.1103/physrev.73.487

    Article  Google Scholar 

  87. Nier, A. O., 1937. The Isotopic Constitution of Osmium. Physical Review, 52(8): 885–885. https://doi.org/10.1103/physrev.52.885

    Article  Google Scholar 

  88. Norman, M., Bennett, V., McCulloch, M., et al., 2002. Osmium Isotopic Compositions by Vapor Phase Sample Introduction Using a Multi-Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 17(10): 1394–1397. https://doi.org/10.1039/b204518d

    Article  Google Scholar 

  89. Nowell, G. M., Luguet, A., Pearson, D. G., et al., 2008. Precise and Accurate 186Os/188Os and 187Os/188Os Measurements by Multi-Collector Plasma Ionisation Mass Spectrometry (MC-ICP-MS) Part I: Solution Analyses. Chemical Geology, 248(3/4): 363–393. https://doi.org/10.1016/j.chemgeo.2007.10.020

    Article  Google Scholar 

  90. Nozaki, T., Suzuki, K., Ravizza, G., et al., 2012. A Method for Rapid Determination of Re and Os Isotope Compositions Using ID-MC-ICP-MS Combined with the Sparging Method. Geostandards and Geoanalytical Research, 36(2): 131–148. https://doi.org/10.1111/j.1751-908x.2011.00125.x

    Article  Google Scholar 

  91. Oxburgh, R., 2001. Residence Time of Osmium in the Oceans. Geochemistry, Geophysics, Geosystems, 2(6): GC000104. https://doi.org/10.1029/2000gc000104

    Article  Google Scholar 

  92. Page, R. W., Jackson, M. J., Krassay, A. A., 2000. Constraining Sequence Stratigraphy in North Australian Basins: SHRIMP U-Pb Zircon Geochronology between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47(3): 431–459. https://doi.org/10.1046/j.1440-0952.2000.00797.x

    Article  Google Scholar 

  93. Pearson, N. J., Alard, O., Griffin, W. L., et al., 2002. In situ Measurement of Re-Os Isotopes in Mantle Sulfides by Laser Ablation Multicollector-Inductively Coupled Plasma Mass Spectrometry: Analytical Methods and Preliminary Results. Geochimica et Cosmochimica Acta, 66(6): 1037–1050. https://doi.org/10.1016/s0016-7037(01)00823-7

    Article  Google Scholar 

  94. Pegram, W. J., Krishnaswami, S., Ravizza, G. E., et al., 1992. The Record of Sea Water 187Os/186Os Variation through the Cenozoic. Earth and Planetary Science Letters, 113(4): 569–576. https://doi.org/10.1016/0012-821x(92)90132-f

    Article  Google Scholar 

  95. Peucker-Ehrenbrink, B., Hannigan, R. E., 2000. Effects of Black Shale Weathering on the Mobility of Rhenium and Platinum Group Elements. Geology, 28(5): 475–478. https://doi.org/10.1130/0091-7613(2000)028<0475:eobswo>2.3.co;2

    Article  Google Scholar 

  96. Peucker-Ehrenbrink, B., Ravizza, G., 2000. The Marine Osmium Isotope Record. Terra Nova, 12(5): 205–219. https://doi.org/10.1046/j.1365-3121.2000.00295.x

    Article  Google Scholar 

  97. Peucker-Ehrenbrink, B., Ravizza, G., Hofmann, A. W., 1995. The Marine 187Os/186Os Record of the Past 80 Million Years. Earth and Planetary Science Letters, 130(1/2/3/4): 155–167. https://doi.org/10.1016/0012-821x(95)00003-u

    Article  Google Scholar 

  98. Puchtel, I. S., Brügmann, G. E., Hofmann, A. W., 2001. 187Os-Enriched Domain in an Archean Mantle Plume: Evidence from 2.8 Ga Komatiites of the Kostomuksha Greenstone Belt, NW Baltic Shield. Earth and Planetary Science Letters, 186(3/4): 513–526. https://doi.org/10.1016/s0012-821x(01)00264-3

    Article  Google Scholar 

  99. Ravizza, G., Turekian, K. K., 1989. Application of the 187Re-187Os System to Black Shale Geochronometry. Geochimica et Cosmochimica Acta, 53(12): 3257–3262. https://doi.org/10.1016/0016-7037(89)90105-1

    Article  Google Scholar 

  100. Ravizza, G., Turekian, K. K., 1992. The Osmium Isotopic Composition of Organic-Rich Marine Sediments. Earth and Planetary Science Letters, 110(1/2/3/4): 1–6. https://doi.org/10.1016/0012-821x(92)90034-s

    Article  Google Scholar 

  101. Rawlings, D. J., 1999. Stratigraphic Resolution of a Multiphase Intracratonic Basin System: The McArthur Basin, Northern Australia. Australian Journal of Earth Sciences, 46(5): 703–723. https://doi.org/10.1046/j.1440-0952.1999.00739.x

    Article  Google Scholar 

  102. Reisberg, L., Meisel, T., 2002. The Re-Os Isotopic System: A Review of Analytical Techniques. Geostandards and Geoanalytical Research, 26(3): 249–267. https://doi.org/10.1111/j.1751-908x.2002.tb00633.x

    Article  Google Scholar 

  103. Rooney, A. D., Chew, D. M., Selby, D., 2011. Re-Os Geochronology of the Neoproterozoic-Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic Stratigraphy, Glaciations and Re-Os Systematics. Precambrian Research, 185(3/4): 202–214. https://doi.org/10.1016/j.precamres.2011.01.009

    Article  Google Scholar 

  104. Rooney, A. D., Selby, D., Houzay, J. P., et al., 2010. Re-Os Geochronology of a Mesoproterozoic Sedimentary Succession, Taoudeni Basin, Mauritania: Implications for Basin-Wide Correlations and Re-Os Organic-Rich Sediments Systematics. Earth and Planetary Science Letters, 289(3/4): 486–496. https://doi.org/10.1016/j.epsl.2009.11.039

    Article  Google Scholar 

  105. Rooney, A. D., Selby, D., Lewan, M. D., et al., 2012. Evaluating Re-Os Systematics in Organic-Rich Sedimentary Rocks in Response to Petroleum Generation Using Hydrous Pyrolysis Experiments. Geochimica et Cosmochimica Acta, 77: 275–291. https://doi.org/10.1016/j.gca.2011.11.006

    Article  Google Scholar 

  106. Rosman, K. J. R., Taylor, P. D. P., 1998. Isotopic Compositions of the Elements 1997 (Technical Report). Pure and Applied Chemistry, 70(1): 217–235. https://doi.org/10.1351/pac199870010217

    Article  Google Scholar 

  107. Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4

    Google Scholar 

  108. Russ III, G. P., Bazan, J. M., Date, A. R., 1987. Osmium Isotopic Ratio Measurements by Inductively Coupled Plasma Source Mass Spectrometry. Analytical Chemistry, 59(7): 984–989. https://doi.org/10.1021/ac00134a013

    Article  Google Scholar 

  109. Schoenberg, R., Nägler, T. F., Kramers, J. D., 2000. Precise Os Isotope Ratio and Re-Os Isotope Dilution Measurements down to the Picogram Level Using Multicollector Inductively Coupled Plasma Mass Spectrometry. International Journal of Mass Spectrometry, 197(1/2/3): 85–94. https://doi.org/10.1016/s1387-3806(99)00215-8

    Article  Google Scholar 

  110. Schoonen, M. A., 2004. Mechanisms of Sedimentary Pyrite Formation. Geological Society of America Special Papers, 379: 117–134. https://doi.org/10.1130/0-8137-2379-5.117

    Google Scholar 

  111. Selby, D., 2005. Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes. Science, 308(5726): 1293–1295. https://doi.org/10.1126/science.1111081

    Article  Google Scholar 

  112. Selby, D., Creaser, R. A., 2001. Re-Os Geochronology and Systematics in Molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada. Economic Geology, 96(1): 197–204. https://doi.org/10.2113/gsecongeo.96.1.197

    Article  Google Scholar 

  113. Selby, D., Creaser, R. A., 2003. Re-Os Geochronology of Organic Rich Sediments: An Evaluation of Organic Matter Analysis Methods. Chemical Geology, 200(3/4): 225–240. https://doi.org/10.1016/s0009-2541(03)00199-2

    Article  Google Scholar 

  114. Selby, D., Creaser, R. A., 2004. Macroscale NTIMS and Microscale LA-MC-ICP-MS Re-Os Isotopic Analysis of Molybdenite: Testing Spatial Restrictions for Reliable Re-Os Age Determinations, and Implications for the Decoupling of Re and Os within Molybdenite. Geochimica et Cosmochimica Acta, 68(19): 3897–3908. https://doi.org/10.1016/j.gca.2004.03.022

    Article  Google Scholar 

  115. Selby, D., Creaser, R. A., 2005a. Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes. Science, 308(5726): 1293–1295. https://doi.org/10.1126/science.1111081

    Article  Google Scholar 

  116. Selby, D., Creaser, R. A., 2005b. Direct Radiometric Dating of the Devonian-Mississippian Time-Scale Boundary Using the Re-Os Black Shale Geochronometer. Geology, 33(7): 545–548. https://doi.org/10.1130/g21324.1

    Article  Google Scholar 

  117. Selby, D., Creaser, R. A., Fowler, M. G., 2007a. Re-Os Elemental and Isotopic Systematics in Crude Oils. Geochimica et Cosmochimica Acta, 71(2): 378–386. https://doi.org/10.1016/j.gca.2006.09.005

    Article  Google Scholar 

  118. Selby, D., Creaser, R. A., Hart, C. J. R., et al., 2002. Absolute Timing of Sulfide and Gold Mineralization: A Comparison of Re-Os Molybdenite and Ar-Ar Mica Methods from the Tintina Gold Belt, Alaska. Geology, 30(9): 791. https://doi.org/10.1130/0091-7613(2002)030<0791:atosag>2.0.co;2

    Article  Google Scholar 

  119. Selby, D., Creaser, R. A., Stein, H. J., et al., 2007b. Assessment of the 187Re Decay Constant by Cross Calibration of Re-Os Molybdenite and U-Pb Zircon Chronometers in Magmatic Ore Systems. Geochimica et Cosmochimica Acta, 71(8): 1999–2013. https://doi.org/10.1016/j.gca.2007.01.008

    Article  Google Scholar 

  120. Selby, D., Creaser, R. A., Dewing, K., et al., 2005. Evaluation of Bitumen as a Re-Os Geochronometer for Hydrocarbon Maturation and Migration: A Test Case from the Polaris MVT Deposit, Canada. Earth and Planetary Science Letters, 235(1/2): 1–15. https://doi.org/10.1016/j.epsl.2005.02.018

    Article  Google Scholar 

  121. Selby, D., Kelley, K. D., Hitzman, M. W., et al., 2009. Re-Os Sulfide (Bornite, Chalcopyrite, and Pyrite Systematics of the Carbonate-Hosted Copper Deposits at Ruby Creek, Southern Brooks Range, Alaska. Economic Geology, 104(3): 437–444. https://doi.org/10.2113/gsecongeo.104.3.437

    Article  Google Scholar 

  122. Sen, I. S., Peucker-Ehrenbrink, B., 2014. Determination of Osmium Concentrations and 187Os/188Os of Crude Oils and Source Rocks by Coupling High-Pressure, High-Temperature Digestion with Sparging OsO4 into a Multicollector Inductively Coupled Plasma Mass Spectrometer. Analytical Chemistry, 86(6): 2982–2988. https://doi.org/10.1021/ac403413y

    Article  Google Scholar 

  123. Shen, J. J., Papanastassiou, D. A., Wasserburg, G. J., 1996. Precise Re-Os Determinations and Systematics of Iron Meteorites. Geochimica et Cosmochimica Acta, 60(15): 2887–2900. https://doi.org/10.1016/0016-7037(96)00120-2

    Article  Google Scholar 

  124. Shi, C. H., Cao, J., Tan, X. C., et al., 2017. Discovery of Oil Bitumen Co-Existing with Solid Bitumen in the Lower Cambrian Longwangmiao Giant Gas Reservoir, Sichuan Basin, Southwestern China: Implications for Hydrocarbon Accumulation Process. Organic Geochemistry, 108: 61–81. https://doi.org/10.1016/j.orggeochem.2017.03.004

    Article  Google Scholar 

  125. Shirey, S. B., Walker, R. J., 1995. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Analytical Chemistry, 67(13): 2136–2141. https://doi.org/10.1021/ac00109a036

    Article  Google Scholar 

  126. Shirey, S. B., Walker, R. J., 1998. The Re-Os Isotope System in Cosmochemistry and High-Temperature Geochemistry. Annual Review of Earth and Planetary Sciences, 26(1): 423–500. https://doi.org/10.1146/annurev.earth.26.1.423

    Article  Google Scholar 

  127. Singh, S. K., Trivedi, J. R., Krishnaswami, S., 1999. Re-Os Isotope Systematics in Black Shales from the Lesser Himalaya: Their Chronology and Role in the 187Os/188Os Evolution of Seawater. Geochimica et Cosmochimica Acta, 63(16): 2381–2392. https://doi.org/10.1016/s0016-7037(99)00201-x

    Article  Google Scholar 

  128. Smoliar, M. I., Walker, R. J., Morgan, J. W., 1996. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271(5252): 1099–1102. https://doi.org/10.1126/science.271.5252.1099

    Article  Google Scholar 

  129. Stein, H. J., Markey, R. J., Morgan, J. W., et al., 2001. The Remarkable Re-Os Chronometer in Molybdenite: How and Why It Works. Terra Nova, 13(6): 479–486. https://doi.org/10.1046/j.1365-3121.2001.00395.x

    Article  Google Scholar 

  130. Stein, H. J., Sundblad, K., Markey, R. J., et al., 1998. Re-Os Ages for Archean Molybdenite and Pyrite, Kuittila-Kivisuo, Finland and Proterozoic Molybdenite, Kabeliai, Lithuania: Testing the Chronometer in a Metamorphic and Metasomatic Setting. Mineralium Deposita, 33(4): 329–345. https://doi.org/10.1007/s001260050153

    Article  Google Scholar 

  131. Sugarman, N., Richter, H., 1948. Note on the “Natural Radioactivity of Rhenium”. Physical Review, 73(11): 1411–1412. https://doi.org/10.1103/physrev.73.1411.2

    Article  Google Scholar 

  132. Suttle, A. D., Libby, W. F., 1954. Natural Radioactivity of Rhenium. Physical Review, 95(3): 866–867. https://doi.org/10.1103/physrev.95.866.2

    Article  Google Scholar 

  133. Suzuki, K., Miyata, Y., Kanazawa, N., 2004. Precise Re Isotope Ratio Measurements by Negative Thermal Ionization Mass Spectrometry (NTI-MS) Using Total Evaporation Technique. International Journal of Mass Spectrometry, 235(1): 97–101. https://doi.org/10.1016/j.ijms.2004.04.006

    Article  Google Scholar 

  134. Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer Science & Business Media, Berbin. https://doi.org/10.1007/978-3-642-87813-8

    Book  Google Scholar 

  135. Turgeon, S. C., Creaser, R. A., Algeo, T. J., 2007. Re-Os Depositional Ages and Seawater Os Estimates for the Frasnian-Famennian Boundary: Implications for Weathering Rates, Land Plant Evolution, and Extinction Mechanisms. Earth and Planetary Science Letters, 261(3/4): 649–661. https://doi.org/10.1016/j.epsl.2007.07.031

    Article  Google Scholar 

  136. Völkening, J., Walczyk, T., Heumann, G. K., 1991. Osmium Isotope Ratio Determinations by Negative Thermal Ionization Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, 105(2): 147–159. https://doi.org/10.1016/0168-1176(91)80077-z

    Article  Google Scholar 

  137. Walczyk, T., 2004. TIMS Versus Multicollector-ICP-MS: Coexistence or Struggle for Survival?. Analytical and Bioanalytical Chemistry, 378(2): 229–231. https://doi.org/10.1007/s00216-003-2053-4

    Article  Google Scholar 

  138. Walder, A. J., Freedman, P. A., 1992. Communication. Isotopic Ratio Measurement Using a Double Focusing Magnetic Sector Mass Analyser with an Inductively Coupled Plasma as an Ion Source. Journal of Analytical Atomic Spectrometry, 7(3): 571. https://doi.org/10.1039/ja9920700571

    Article  Google Scholar 

  139. Walker, R. J., Echeverria, L. M., Shirey, S. B., et al., 1991a. Re-Os Isotopic Constraints on the Origin of Volcanic Rocks, Gorgona Island, Colombia: Os Isotopic Evidence for Ancient Heterogeneities in the Mantle. Contributions to Mineralogy and Petrology, 107(2): 150–162. https://doi.org/10.1007/bf00310704

    Article  Google Scholar 

  140. Walker, R. J., Fassett, J. D., 1986. Isotopic Measurement of Subananogram Quantities of Rhenium and Osmium by Resonance Ionization Mass Spectrometry. Analytical Chemistry, 58(14): 2923–2927. https://doi.org/10.1021/ac00127a007

    Article  Google Scholar 

  141. Walker, R. J., Morgan, J. W., Naldrett, A. J., et al., 1991b. Re-Os Isotope Systematics of Ni-Cu Sulfide Ores, Sudbury Igneous Complex, Ontario: Evidence for a Major Crustal Component. Earth and Planetary Science Letters, 105(4): 416–429. https://doi.org/10.1016/0012-821x(91)90182-h

    Article  Google Scholar 

  142. Walker, R. J., Shirey, S. B., Stecher, O., 1988. Comparative Re-Os, Sm-Nd and Rb-Sr Isotope and Trace Element Systematics for Archean Komatiite Flows from Munro Township, Abitibi Belt, Ontario. Earth and Planetary Science Letters, 87(1/2): 1–12. https://doi.org/10.1016/0012-821x(88)90060-x

    Article  Google Scholar 

  143. Wang, J., Tenger, Liu, W.-H., et al., 2016. Definition of Petroleum Generating Time for Lower Cambrian Bitumen of the Kuangshanliang in the west Sichuan Basin, China: Evidence from Re-Os Isotopic Isochron Age. Natural Gas Geoscience, 27(7): 1290–1298. https://doi.org/10.11764/j.issn.1672-1926.2016.07.1290.

    Google Scholar 

  144. Watt, D. E., Glover, R. N., 1962. A Search for Radioactivity among the Naturally Occurring Isobaric Pairs. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 7(73): 105–114. https://doi.org/10.1080/14786436208201861

    Article  Google Scholar 

  145. Williford, K. H., Grice, K., Logan, G. A., et al., 2011. The Molecular and Isotopic Effects of Hydrothermal Alteration of Organic Matter in the Paleoproterozoic McArthur River Pb/Zn/Ag Ore Deposit. Earth and Planetary Science Letters, 301(1/2): 382–392. https://doi.org/10.1016/j.epsl.2010.11.029

    Article  Google Scholar 

  146. Wolf, C. J., Johnston, W. H., 1962. Natural Radioactivity of Rhenium. Physical Review, 125(1): 307–310. https://doi.org/10.1103/physrev.125.307

    Article  Google Scholar 

  147. Woodhead, J. D., 2005. Isotope Ratio Determination in the Earth and Environmental Sciences: Developments and Applications in 2003. Geostandards and Geoanalytical Research, 29(1): 26–36. https://doi.org/10.1111/j.1751-908x.2005.tb00652.x

    Article  Google Scholar 

  148. Woodhead, J. D., 2006. Isotope Ratio Determination in the Earth and Environmental Sciences: Developments and Applications in 2004/2005. Geostandards and Geoanalytical Research, 30(3): 187–196. https://doi.org/10.1111/j.1751-908x.2006.tb01061.x

    Article  Google Scholar 

  149. Woodhead, J. D., 2008. Isotope Ratio Determination in the Earth and Environmental Sciences: Developments and Applications in 2006–2007. Geostandards and Geoanalytical Research, 32(4): 495–507. https://doi.org/10.1111/j.1751-908x.2008.00919.x

    Article  Google Scholar 

  150. Wu, J., Li, Z., Wang, X. C., 2016. Comment on “Behavior of Re and Os during Contact between an Aqueous Solution and Oil: Consequences for the Application of the Re-Os Geochronometer to Petroleum” [Geochim. Cosmochim. Acta 158 (2015) 1–21]. Geochimica et Cosmochimica Acta, 186: 344–347. https://doi.org/10.1016/j.gca.2016.02.018

    Article  Google Scholar 

  151. Xu, G. P., Hannah, J. L., Stein, H. J., et al., 2009. Re-Os Geochronology of Arctic Black Shales to Evaluate the Anisian-Ladinian Boundary and Global Faunal Correlations. Earth and Planetary Science Letters, 288(3/4): 581–587. https://doi.org/10.1016/j.epsl.2009.10.022

    Article  Google Scholar 

  152. Yamashita, Y., Takahashi, Y., Haba, H., et al., 2007. Comparison of Reductive Accumulation of Re and Os in Seawater-Sediment Systems. Geochimica et Cosmochimica Acta, 71(14): 3458–3475. https://doi.org/10.1016/j.gca.2007.05.003

    Article  Google Scholar 

  153. Yang, R., He, S., Wang, X., et al., 2016. Paleo-Ocean Redox Environments of the Upper Ordovician Wufeng and the First Member in Lower Silurian Longmaxi Formations in the Jiaoshiba Area, Sichuan Basin. Canadian Journal of Earth Sciences, 53(4): 426–440. https://doi.org/10.1139/cjes-2015-0210

    Article  Google Scholar 

  154. Yin, L., Li, J., Liu, J. G., et al., 2017. Precise and Accurate Re-Os Isotope Dating of Organic-Rich Sedimentary Rocks by Thermal Ionization Mass Spectrometry with an Improved H2O2-HNO3 Digestion Procedure. International Journal of Mass Spectrometry, 421: 263–270. https://doi.org/10.1016/j.ijms.2017.07.013

    Article  Google Scholar 

  155. Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5): 879–892. https://doi.org/10.1007/s12583-019-1013-7

    Article  Google Scholar 

  156. Zou, C. N., Yang, Z., Dai, J. X., et al., 2015. The Characteristics and Significance of Conventional and Unconventional Sinian-Silurian Gas Systems in the Sichuan Basin, Central China. Marine and Petroleum Geology, 64: 386–402. https://doi.org/10.1016/j.marpetgeo.2015.03.005

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Start-Up Project for Introduced Talent of Yunnan University (No. 20190043), the CNPC Key Laboratory of Carbonate Reservoirs Innovation Fund (No. RIPED-2020-JS-51020). Drs Chencheng He and Nüjia Peng were thanked for their assistance during sampling. Meanwhile, we would like to express special thanks to editor for handling the manuscript and three anonymous reviewers for their constructive comments. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1066-7.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xuan-Ce Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, SJ., Wang, XC., Wilde, S.A. et al. Revisiting Rhenium-Osmium Isotopic Investigations of Petroleum Systems: From Geochemical Behaviours to Geological Interpretations. J. Earth Sci. (2021). https://doi.org/10.1007/s12583-020-1066-7

Download citation

Key Words

  • Re-Os isotope system
  • petroleum system investigation
  • geochemical behaviour of Re and Os in petroleum system