Skip to main content

Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation

Abstract

Serpentinization and calcite precipitation of mantle peridotites exhumed along detachment faults at the slow- to ultraslow-spreading centers can provide important clues to the hydrothermal alteration processes. The Tianxiu hydrothermal field is a new-found active and ultramafichosted hydrothermal vent site along the Carlsberg Ridge, Northwest Indian Ocean. Two types of calcite veins are recognized in serpentinized harzburgite samples collected from the seafloor at the water depth of 3 500 m (3.67°N/63.83°E) and 400 m north of Tianxiu hydrothermal field. Calcite veins I occur in the fractures that cut through mesh texture in the highly serpentinized harzburgite, while calcite veins II precipitate within the mesh texture in the relatively weaker serpentinized harzburgite. Both veins show similar δ13CPDB (+0.54‰ and +0.58‰) but different δ18OPDB(−16.67‰ and +4.46‰) values, suggesting that they were derived from the same carbon source but precipitated at different temperatures. Taking the deep seawater temperature of 2 °C as the precipitation temperature of the calcite veins I, the equilibrium δ18OV-SMOW of calcite-precipitating fluid was calculated to be 1.78‰, which is close to the average δ18OV-SMOW value (1.74‰) of vent fluid samples from the ultramafic-hosted hydrothermal systems worldwide. The formation temperature of calcite veins II is inferred to be approximately 134 °C, based on the calculated δ18OV-SMOW above. The temperature differences of calcite precipitation probably resulted from the fluid cooling conductively and mixing with seawater along the presumed fractures during slow upflow. The low-temperature calcite postdates the mesh texture, while the high-temperature calcite may precipitate under relatively low water/rock ratios, alkaline and reduced conditions among the mesh texture, which is revealed by the geochemical models. Therefore, it is suggested that they both have been influenced by hydrothermal fluids and the sampling site is near the discharge zone of hydrothermal circulation.

This is a preview of subscription content, access via your institution.

References Cited

  1. Alexander, G., Mercedes Maroto-Valer, M., Gafarova-Aksoy, P., 2007. Evaluation of Reaction Variables in the Dissolution of Serpentine for Mineral Carbonation. Fuel, 86(1/2): 273–281. https://doi.org/10.1016/j.fuel.2006.04.034

    Article  Google Scholar 

  2. Allen, D. E., Seyfried, W. E., Jr., 2004. Serpentinization and Heat Generation: Constraints from Lost City and Rainbow Hydrothermal Systems. Geochimica et Cosmochimica Acta, 68(6): 1347–1354. https://doi.org/10.1016/j.gca.2003.09.003

    Article  Google Scholar 

  3. Alt, J. C., Shanks, W. C., III, 2003. Serpentinization of Abyssal Peridotites from the Mark Area, Mid-Atlantic Ridge: Sulfur Geochemistry and Reaction Modeling. Geochimica et Cosmochimica Acta, 67(4): 641–653. https://doi.org/10.1016/s0016-7037(02)01142-0

    Article  Google Scholar 

  4. Andreani, M., Luquot, L., Gouze, P., et al., 2009. Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich Brine through Peridotites. Environmental Science and Technology, 43(4): 1226–1231. https://doi.org/10.1021/es8018429

    Article  Google Scholar 

  5. Andreani, M., Mevel, C., Boullier, A. M., et al., 2007. Dynamic Control on Serpentine Crystallization in Veins: Constraints on Hydration Processes in Oceanic Peridotites. Geochemistry, Geophysics, Geosystems, 8(2): Q02012. https://doi.org/10.1029/2006gc001373

    Article  Google Scholar 

  6. Bach, W., Rosner, M., Jons, N., et al., 2011. Carbonate Veins Trace Seawater Circulation during Exhumation and Uplift of Mantle Rock: Results from ODP Leg 209. Earth and Planetary Science Letters, 311(3/4): 242–252. https://doi.org/10.1016/j.epsl.2011.09.021

    Article  Google Scholar 

  7. Bankole, S. A., Buckman, J., Stow, D., et al., 2019. Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments: IODP Expedition 339. Journal of Earth Science, 30(2): 407–421. https://doi.org/10.1007/sl2583-019-1210-4

    Article  Google Scholar 

  8. Barnes, I., O'Neill, J. R., Rapp, J. B., et al., 1973. Silica-Carbonate Alteration of Serpentine; Wall Rock Alteration in Mercury Deposits of the California Coast Ranges. Economic Geology, 68(3): 388–398. https://doi.org/10.2113/gsecongeo.68.3.388

    Article  Google Scholar 

  9. Boschi, C., Dini, A., Dallai, L., et al, 2009. Enhanced CO2-Mineral Sequestration by Cyclic Hydraulic Fracturing and Si-Rich Fluid Infiltration into Serpentinites at Malentrata (Tuscany, Italy). Chemical Geology, 265(1/2): 209–226. https://doi.org/10.1016/j.chemgeo.2009.03.016

    Article  Google Scholar 

  10. Coggon, R. M., Teagle, D. A. H., Cooper, M. J., et al, 2004. Linking Basement Carbonate Vein Compositions to Porewater Geochemistry Across the Eastern Flank of the Juan de Fuca Ridge, ODP Leg 168. Earth and Planetary Science Letters, 219(1/2): 111–128. https://doi.org/10.1016/s0012-821x(03)00697-6

    Article  Google Scholar 

  11. Coleman, R. G., 1997. Serpentinite: Record of Tectonic and Petrologic History. Eos, Transactions American Geophysical Union, 78(13): 137. https://doi.org/10.1029/97eo00088

    Article  Google Scholar 

  12. Coplen, T. B., Kendall, C., Hopple, J., 1983. Comparison of Stable Isotope Reference Samples. Nature, 302(5905): 236–238. https://doi.org/10.1038/302236a0

    Article  Google Scholar 

  13. Demartin, B., Hirth, G., Evans, B., 2004. Experimental Constraints on Thermal Cracking of Peridotite at Oceanic Spreading Centers. In: German, C. R., Lin, J., Parson, L. M., eds, Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans. American Geophysical Union, Washington DC. 167–185

    Google Scholar 

  14. Eickmann, B., Bach, W., Peckmann, J., 2009. Authigenesis of Carbonate Minerals in Modern and Devonian Ocean-Floor Hard Rocks. The Journal of Geology, 117(3): 307–323. https://doi.org/10.1086/597362

    Article  Google Scholar 

  15. Fouquet, Y., Cambon, P., Etoubleau, J., et al., 2010. Geodiversity of Hydrothermal Processes along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit. In: Rona, P. A., Devey, C. W., Dyment, J., et al., eds., Diversity Of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington DC. 321–367

    Chapter  Google Scholar 

  16. Frost, B. R., 1985. On the Stability of Sulfides, Oxides, and Native Metals in Serpentinite. Journal of Petrology, 26(1): 31–63. https://doi.org/10.1093/petrology/26.L31

    Article  Google Scholar 

  17. Gamo, T., Chiba, H., Yamanaka, T., et al., 2001. Chemical Characteristics of Newly Discovered Black Smoker Fluids and Associated Hydrothermal Plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth and Planetary Science Letters, 193(3/4): 371–379. https://doi.org/10.1016/s0012-821x(01)00511-8

    Article  Google Scholar 

  18. Grozeva, N. G., Klein, F., Seewald, J. S., et al., 2017. Experimental Study of Carbonate Formation in Oceanic Peridotite. Geochimica et Cosmochimica Acta, 199: 264–286. https://doi.org/10.1016/j.gca.2016.10.052

    Article  Google Scholar 

  19. Guo, L. N., Liu, S. S., Hou, L., et al., 2019. Fluid Inclusion and H-O Isotope Geochemistry of the Phapon Gold Deposit, NW Laos: Implications for Fluid Source and Ore Genesis. Journal of Earth Science, 30(1): 80–94. https://doi.org/10.1007/sl2583-018-0866-5

    Article  Google Scholar 

  20. Han, X., Wang, Y., Li, X., 2015. First Ultramafic-Hosted Hydrothermal Sulfide Deposit Discovered on the Carlsberg Ridge, Northwest Indian Ocean. In: Lin, J., Li, J. B., eds., The Third InterRidge Theoretical Insitute, Hangzhou

    Google Scholar 

  21. Hansen, L. D., Dipple, G. M., Gordon, T. M., et al., 2005. Carbonated Serpentinite (Listwanite) at Atlin, British Columbia: A Geological Analogue to Carbon Dioxide Sequestration. The Canadian Mineralogist, 43(1): 225–239. https://doi.org/10.2113/gscanmin.43.L225

    Article  Google Scholar 

  22. James, R. H., Green, D. R. H., Stock, M. J., et al., 2014. Composition of Hydrothermal Fluids and Mineralogy of Associated Chimney Material on the East Scotia Ridge Back-Arc Spreading Centre. Geochimica et Cosmochimica Acta, 139: 47–71. https://doi.org/10.1016/j.gca.2014.04.024

    Article  Google Scholar 

  23. Jamtveit, B., Putnis, C. V., Malme-Sørenssen, A., 2009. Reaction Induced Fracturing during Replacement Processes. Contributions to Mineralogy and Petrology, 157(1): 127–133. https://doi.org/10.1007/s00410-008-0324-y

    Article  Google Scholar 

  24. Jean-Baptiste, P., Charlou, J. L., Stievenard, M., 1997. Oxygen Isotope Study of Mid-Ocean Ridge Hydrothermal Fluids: Implication for the Oxygen-18 Budget of the Oceans. Geochimica et Cosmochimica Acta, 61(13): 2669–2677. https://doi.org/10.1016/s0016-7037(97)00090-2

    Article  Google Scholar 

  25. Jedrysek, M. O., Halas, S., 1990. The Origin of Magnesite Deposits from the Polish Foresudetic Block Ophiolites: Preliminary δ13C and δ18O Investigations. Terra Nova, 2(2): 154–159. https://doi.org/10.1111/j.1365-3121.1990.tb00057.x

    Article  Google Scholar 

  26. Karson, J. A., Lawrence, R. M., 1997. Tectonic Setting of Serpentinite Exposures on the Western Median Valley Wall of the Mark Area in the Vicinity of Site 920. In: Karson, J. A., Cannat, M., Miller, D. J., eds., Proceedings of the Ocean Drilling Program, Scientific Results. 5-21

    Chapter  Google Scholar 

  27. Kelemen, P. B., Hirth, G., 2012. Reaction-Driven Cracking during Retrograde Metamorphism: Olivine Hydration and Carbonation. Earth and Planetary Science Letters, 345/346/347/348: 81–89. https://doi.org/10.1016/j.epsl.2012.06.018

    Google Scholar 

  28. Kelemen, P. B., Matter, J., 2008. In-situ Carbonation of Peridotite for CO2 Storage. Proceedings of the National Academy of Sciences, 105(45): 17295–17300. https://doi.org/10.1073/pnas.0805794105

    Article  Google Scholar 

  29. Kelemen, P. B., Matter, J., Streit, E. E., et al., 2011. Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in-situ CO2 Capture and Storage. Annual Review of Earth and Planetary Sciences, 39(1): 545–576. https://doi.org/10.1146/annurev-earth-092010-152509

    Article  Google Scholar 

  30. Kelley, D. S., Karson, J. A., Blackman, D. K., et al., 2001. An Off-Axis Hydrothermal Vent Field near the Mid-Atlantic Ridge at 30°N. Nature, 412(6843): 145–149. https://doi.org/10.1038/35084000

    Article  Google Scholar 

  31. Kim, S. T., O'Neil, J. R., 1997. Equilibrium and Nonequilibrium Oxygen Isotope Effects in Synthetic Carbonates. Geochimica et Cosmochimica Acta, 61(16): 3461–3475. https://doi.org/10.1016/s0016-7037(97)00169-5

    Article  Google Scholar 

  32. Klein, E., Bach, W., Jons, N., et al., 2009. Iron Partitioning and Hydrogen Generation during Serpentinization of Abyssal Peridotites from 15°N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 73(22): 6868–6893. https://doi.org/10.1016/j.gca.2009.08.021

    Article  Google Scholar 

  33. Klein, E., Humphris, S. E., Guo, W. E., et al., 2015. Fluid Mixing and the Deep Biosphere of a Fossil Lost City-Type Hydrothermal System at the Iberia Margin. Proceedings of the National Academy of Sciences, 112(39): 12036–12041. https://doi.org/10.1073/pnas.1504674112

    Article  Google Scholar 

  34. Klein, E., McCollom, T. M., 2013. From Serpentinization to Carbonation: New Insights from a CO2 Injection Experiment. Earth and Planetary Science Letters, 379: 137–145. https://doi.org/10.1016/j.epsl.2013.08.017

    Article  Google Scholar 

  35. Kong, X. Z., Tutolo, B. M., Saar, M. O., 2013. DBCreate: A SUPCRT92-Based Program for Producing EA3/6, Toughreact, and Gwb Thermodynamic Databases at User-Defined T and P. Computers & Geosciences, 51: 415–417. https://doi.org/10.1016/j.cageo.2012.08.004

    Article  Google Scholar 

  36. Kretz, R., 1983. Symbols for Rock-Forming Minerals. American Mineralogist, 68: 277–279. https://doi.org/10.1016/0040-1951(84)90122-7

    Google Scholar 

  37. Kump, L. R., 1989. Alternative Modeling Approaches to the Geochemical Cycles of Carbon, Sulfur, and Strontium Isotopes. American Journal of Science, 289(4): 390–410. https://doi.org/10.2475/ajs.289.4390

    Article  Google Scholar 

  38. Liu, S. G., Deng, B., Jansa, L., et al., 2018. Multi-Stage Basin Development and Hydrocarbon Accumulations: A Review of the Sichuan Basin at Eastern Margin of the Tibetan Plateau. Journal of Earth Science, 29(2): 307–325. https://doi.org/10.1007/sl2583-017-0904-8

    Article  Google Scholar 

  39. Ma, B. J., Wu, S. G., Mi, L. J., et al., 2018. Mixed Carbonate-Siliciclastic Deposits in a Channel Complex in the Northern South China Sea. Journal of Earth Science, 29(3): 707–720. https://doi.org/10.1007/sl2583-018-0830-4

    Article  Google Scholar 

  40. Macdonald, A. H., Fyfe, W. S., 1985. Rate of Serpentinization in Seafloor Environments. Tectonophysics, 116(1/2): 123–135. https://doi.org/10.1016/0040-1951(85)90225-2

    Article  Google Scholar 

  41. Marques, A. F. A., Barriga, F. J. A. S., Scott, S. D., 2007. Sulfide Mineralization in an Urtramafic-Rock Hosted Seafloor Hydrothermal System: From Serpentinization to the Formation of Cu-Zn-(Co)-Rich Massive Sulfides. Marine Geology, 245(1/2/3/4): 20–39. https://doi.org/10.1016/j.margeo.2007.05.007

    Article  Google Scholar 

  42. Martin, B., Fyfe, W. S., 1970. Some Experimental and Theoretical Observations on the Kinetics of Hydration Reactions with Particular Reference to Serpentinization. Chemical Geology, 6: 185–202. https://doi.org/10.1016/0009-2541(70)90018-5

    Article  Google Scholar 

  43. McCollom, T. M., Bach, W., 2009. Thermodynamic Constraints on Hydrogen Generation during Serpentinization of Urtramafic Rocks. Geochimica et Cosmochimica Acta, 73(3): 856–875. https://doi.org/10.1016/j.gca.2008.10.032

    Article  Google Scholar 

  44. Mevel, C., 2003. Serpentinization of Abyssal Peridotites at Mid-Ocean Ridges. Comptes Rendus Geoscience, 335(10/11): 825–852. https://doi.org/10.1016/j.crte.2003.08.006

    Article  Google Scholar 

  45. Plumper, O., Røyne, A., Magraso, A., et al., 2012. The Interface-Scale Mechanism of Reaction-Induced Fracturing during Serpentinization. Geology, 40(12): 1103–1106. https://doi.org/10.1130/g33390.1

    Article  Google Scholar 

  46. Power, I. M., Wilson, S. A., Dipple, G. M., 2013. Serpentinite Carbonation for CO2 Sequestration. Elements, 9(2): 115–121. https://doi.org/10.2113/gselements.9.2.115

    Article  Google Scholar 

  47. Proskurowski, G., Lilley, M. D., Kelley, D. S., et al., 2006. Low Temperature Volatile Production at the Lost City Hydrothermal Field, Evidence from a Hydrogen Stable Isotope Geothermometer. Chemical Geology, 229(4): 331–343. https://doi.org/10.1016/j.chemgeo.2005.11.005

    Article  Google Scholar 

  48. Roumejon, S., Cannat, M., 2014. Serpentinization of Mantle-Derived Peridotites at Mid-Ocean Ridges: Mesh Texture Development in the Context of Tectonic Exhumation. Geochemistry, Geophysics, Geosystems, 15(6): 2354–2379. https://doi.org/10.1002/2013gc005148

    Article  Google Scholar 

  49. Schmidt, G. A., Bigg, G. R., Rohling, E. J., 1999. Global Seawater Oxygen-18 Database-v1.22. https://data.giss.nasa.gov/o18data/

    Google Scholar 

  50. Schmidt, K., Garbe-Schonberg, D., Koschinsky, A., et al., 2011. Fluid Elemental and Stable Isotope Composition of the Nibelungen Hydrothermal Field (8° 18′S, Mid-Atlantic Ridge): Constraints on Fluid-Rock Interaction in Heterogeneous Lithosphere. Chemical Geology, 280(1/2): 1–18. https://doi.org/10.1016/j.chemgeo.2010.07.008

    Article  Google Scholar 

  51. Schmidt, K., Koschinsky, A., Garbe-Schonberg, D., et al., 2007. Geochemistry of Hydrothermal Fluids from the Ultramafic-Hosted Logatchev Hydrothermal Field, 15°N on the Mid-Atlantic Ridge: Temporal and Spatial Investigation. Chemical Geology, 242(1/2): 1–21. https://doi.org/10.1016/j.chemgeo.2007.01.023

    Article  Google Scholar 

  52. Schroeder, T., Bach, W., Jons, N., et al., 2015. Fluid Circulation and Carbonate Vein Precipitation in the Footwall of an Oceanic Core Complex, Ocean Drilling Program Site 175, Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 16(10): 3716–3732. https://doi.org/10.1002/2015GC006041

    Article  Google Scholar 

  53. Schroeder, T., Cheadle, M. J., Dick, H. J. B., et al., 2007. Nonvolcanic Seafloor Spreading and Corner-Flow Rotation Accommodated by Extensional Faulting at 15°N on the Mid-Atlantic Ridge: A Structural Synthesis of ODP Leg 209. Geochemistry, Geophysics, Geosystems, 8(6): 1–16. https://doi.org/10.1029/2006gc001567

    Article  Google Scholar 

  54. Schwarzenbach, E. M., 2016. Research Focus: Serpentinization and the Formation of Fluid Pathways. Geology, 44(2): 175–176. https://doi.org/10.1130/focus022016.1

    Article  Google Scholar 

  55. Schwarzenbach, E. M., Früh-Green, G. L., Bernasconi, S. M., et al., 2013. Serpentinization and Carbon Sequestration: A Study of Two Ancient Peridotite-Hosted Hydrothermal Systems. Chemical Geology, 351: 115–133. https://doi.org/10.1016/j.chemgeo.2013.05.016

    Article  Google Scholar 

  56. Shanks, W. C., III., 2001. Stable Isotopes in Seafloor Hydrothermal Systems: Vent Fluids, Hydrothermal Deposits, Hydrothermal Alteration, and Microbial Processes. Reviews in Mineralogy and Geochemistry, 43(1): 469–525. https://doi.org/10.2138/gsrmg.43.1.469

    Article  Google Scholar 

  57. Urey, H. C., 1947. The Thermodynamic Properties of Isotopic Substances. Journal of the Chemical Society (Resumed), 562–581. https://doi.org/10.1039/jr9470000562

    Google Scholar 

  58. Wang, S. J., Li, X. P., Duan, W. Y., et al., 2019. Record of Early-Stage Rodingitization from the Purang Ophiolite Complex, Western Tibet. Journal of Earth Science, https://doi.org/10.1007/sl2583-019-1244-7

    Google Scholar 

  59. Wolery, T. J., 1992. EQ3/6, a Software Package for Geochemical Modeling of Aqueous Systems: Package Overview and Installation Guide (Version 7.0). Lawrwnce, Livermore, National, Laboratory Report UCRL-MA-110662 PT I, Livermore California. 1–74

    Book  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Key Research and Development Program of China (No. 2018YFC0309903), the Scientific Research Fund of the Second Institute of Oceanography, MNR (No. QNYC1701), the China Ocean Mineral Resources R&D Association Project (No. DY135-S2-1-02&05), and the National Science Foundation of China (No. 41976076). We would like to thank the captains, the crew, and the scientific parties onboard during the DY33rd cruise in 2015. We appreciate the valuable suggestions given by Thomas M. McCollom and Klischies Meike, which substantially improved the quality of the manuscript. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript. The final publication is available at Springer via https://doi.org/10.1007/sl2583-020-0876-y.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiqiu Han or Yejian Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Han, X., Wang, Y. et al. Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation. J. Earth Sci. 31, 91–101 (2020). https://doi.org/10.1007/s12583-020-0876-y

Download citation

Key words

  • calcite veins
  • serpentinized harzburgite
  • isotopes
  • geochemical models
  • Carlsberg Ridge