Abstract
The in-situ Sr isotope determination of solid samples has the advantages of high spatial resolution and convenient and rapid sample preparation. However, due to the lack of column chemistry separation of matrix elements from Sr, the interference correction (especially the isobaric interference from 87Rb on 87Sr) becomes a big issue for high precise in-situ Sr isotope analytical results. In this study, we evaluated the influence of isobaric interference systematically and adopted an improved strategy for isobaric interference correction of Rb. Specifically, as an external standard for data calibration, an in-house silicate standard (Rb-std) was fused from pure oxide powders. The new standard (Rb-std) shows very low contents of Sr (<1 ppm), Yb (<0.09 ppm) and Er (<0.05 ppm), which directly avoid the trouble of interference of doubly charged ions and isobar, when we determinate the mass fractionation factors of Rb (βRb). Our improved method can provide more accurate data than previous researches, in which the mass fractionation were calculated from an external reference material StHs6/80-G with high Rb (30.07 ppm), Sr (482 ppm), Yb (1.13 ppm) and Er (1.18 ppm). Then, these βRb from Rb-std were applied by linear interpolation to the unknown samples for correction of 87Rb on 87Sr. The analytical results of serial international reference materials (BIR-1G, BCR-2G, BHVO-2G, T1-G and ATHO-G) demonstrate that our improved method can raise the upper limit of Rb/Sr for in-situ Sr isotope determination and reduce the relative standard deviation of results. This improvement of the upper limit of Rb/Sr (<0.33) will expand not only range of microanalysis for silicate minerals, but also bulk Sr isotope determination of volcanic rock combining with rapid fusion technique.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References Cited
Baker, J., Peate, D., Waight, T., et al., 2004. Pb Isotopic Analysis of Standards and Samples Using a 207Pb-204Pb Double Spike and Thallium to Correct for Mass Bias with a Double-Focusing MC-ICP-MS. Chemical Geology, 211(3/4): 275–303. https://doi.org/10.1016/j.chemgeo.2004.06.030
Bao, Z. A., Yuan, H. L., Zong, C. L., et al., 2016. Simultaneous Determination of Trace Elements and Lead Isotopes in Fused Silicate Rock Powders Using a Boron Nitride Vessel and FsLA-(MC)-ICP-MS. Journal of Analytical Atomic Spectrometry, 31(4): 1012–1022. https://doi.org/10.1039/c5ja00410a
Bizzarro, M., Simonetti, A., Stevenson, R. K., et al., 2003. In-situ 87Sr/86Sr Investigation of Igneous Apatites and Carbonates Using Laser-Ablation MC-ICP-MS. Geochimica et Cosmochimica Acta, 67(2): 289–302. https://doi.org/10.1016/s0016-7037(02)01048-7
Chen, H., Xia, Q. K., Deloule, E., et al., 2017. Typical Oxygen Isotope Profile of Altered Oceanic Crust Recorded in Continental Intraplate Basalts. Journal of Earth Science, 28(4): 578–587. https://doi.org/10.1007/s12583-017-0798-5
Chen, Y. W., Hu, R. Z., Bi, X. W., et al., 2018. Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance. Journal of Earth Science, 29(3): 492–507. https://doi.org/10.1007/s12583-017-0906-6
Christensen, J. N., Halliday, A. N., Lee, D. C., et al., 1995. In-situ Sr Isotopic Analysis by Laser Ablation. Earth and Planetary Science Letters, 136(1/2): 79–85. https://doi.org/10.1016/0012-821x(95)00181-6
Danyushevsky, L., Robinson, P., Gilbert, S., et al., 2011. Routine Quantitative Multi-Element Analysis of Sulphide Minerals by Laser Ablation ICP-MS: Standard Development and Consideration of Matrix Effects. Geochemistry: Exploration, Environment, Analysis, 11(1): 51–60. https://doi.org/10.1144/1467-7873/09-244
Davidson, J., Tepley, F. III, Palacz, Z., et al., 2001. Magma Recharge, Contamination and Residence Times Revealed by in-situ Laser Ablation Isotopic Analysis of Feldspar in Volcanic Rocks. Earth and Planetary Science Letters, 184(2): 427–442. https://doi.org/10.1016/s0012-821x(00)00333-2
Deng, L. X., Liu, Y. S., Zong, K. Q., et al., 2017. Trace Element and Sr Isotope Records of Multi-Episode Carbonatite Metasomatism on the Eastern Margin of the North China Craton. Geochemistry, Geophysics, Geosystems, 18(1): 220–237. https://doi.org/10.1002/2016gc006618
Ehrlich, S., Gavrieli, I., Dor, L. B., et al., 2001a. Direct High-Precision Measurements of the 87Sr/86Sr Isotope Ratio in Natural Water, Carbonates and Related Materials by Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Journal of Analytical Atomic Spectrometry, 16(12): 1389–1392. https://doi.org/10.1039/b107996b
Ehrlich, S., Karpas, Z., Ben-Dor, L., et al., 2001b. High Precision Lead Isotope Ratio Measurements by Multicollector-ICP-MS in Variable Matrices. Journal of Analytical Atomic Spectrometry, 16(9): 975–977. https://doi.org/10.1039/b102454j
Harlou, R., Pearson, D. G., Nowell, G. M., et al., 2009. Combined Sr Isotope and Trace Element Analysis of Melt Inclusions at Sub-Ng Levels Using Micro-Milling, TIMS and ICPMS. Chemical Geology, 260(3/4): 254–268. https://doi.org/10.1016/j.chemgeo.2008.12.020
He, Z. W., Huang, F., Yu, H. M., et al., 2015. A Flux-Free Fusion Technique for Rapid Determination of Major and Trace Elements in Silicate Rocks by LA-ICP-MS. Geostandards and Geoanalytical Research, 40(1): 5–21. https://doi.org/10.1111/j.1751-908X.2015.00352.x
Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093. https://doi.org/10.1039/b804760j
Jochum, K. P., Stoll, B., Weis, U., et al., 2009. In-situ Sr Isotopic Analysis of Low Sr Silicates Using LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 24(9): 1237. https://doi.org/10.1039/b905045k
Ju, Y. J., Zhang, X. L., Lai, S. C., et al., 2017. Permian-Triassic Highly-Fractionated I-Type Granites from the Southwestern Qaidam Basin (NW China): Implications for the Evolution of the Paleo-Tethys in the Eastern Kunlun Orogenic Belt. Journal of Earth Science, 28(1): 51–62. https://doi.org/10.1007/s12583-017-0745-5
Kimura, J. I., Takahashi, T., Chang, Q., 2013. A New Analytical Bias Correction for in-situ Sr Isotope Analysis of Plagioclase Crystals Using Laser-Ablation Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 28(6): 945–957. https://doi.org/10.1039/c3ja30329b
Konter, J. G., Storm, L. P., 2014. High Precision 87Sr/86Sr Measurements by MC-ICP-MS, Simultaneously Solving for Kr Interferences and Mass-Based Fractionation. Chemical Geology, 385: 26–34. https://doi.org/10.1016/j.chemgeo.2014.07.009
Koornneef, J. M., Bouman, C., Schwieters, J. B., et al., 2013. Use of 1012 Ohm Current Amplifiers in Sr and Nd Isotope Analyses by TIMS for Application to Sub-Nanogram Samples. Journal of Analytical Atomic Spectrometry, 28(5): 749–754. https://doi.org/10.1039/c3ja30326h
Koornneef, J. M., Bouman, C., Schwieters, J. B., et al., 2014. Measurement of Small Ion Beams by Thermal Ionisation Mass Spectrometry Using New 1013 Ohm Resistors. Analytica Chimica Acta, 819: 49–55s. https://doi.org/10.1016/j.aca.2014.02.007
Kroslakova, I., Günther, D., 2007. Elemental Fractionation in Laser Ablation Inductively Coupled Plasma-Mass Spectrometry: Evidence for Mass Load Induced Matrix Effects in the ICP during Ablation of a Silicate Glass. Journal of Analytical Atomic Spectrometry, 22(1): 51–62. https://doi.org/10.1039/b606522h
Kuhn, H. R., Guillong, M., Günther, D., 2004. Size-Related Vaporisation and Ionisation of Laser-Induced Glass Particles in the Inductively Coupled Plasma. Analytical and Bioanalytical Chemistry, 378(4): 1069–1074. https://doi.org/10.1007/s00216-003-2346-7
Li, Z. H., Duan, D. F., Jiang, S. Y., et al., 2018. In-situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization. Journal of Earth Science, 29(2): 295–306. https://doi.org/10.1007/s12583-018-0837-x
Liu, W. H., Zhang, X. J., Zhang, J., et al., 2018. Sphalerite Rb-Sr Dating and in-situ Sulfur Isotope Analysis of the Daliangzi Lead-Zinc Deposit in Sichuan Province, SW China. Journal of Earth Science, 29(3): 573–586. https://doi.org/10.1007/s12583-018-0785-5
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
Müller, W., Anczkiewicz, R., 2015. Accuracy of Laser-Ablation (LA)-MC-ICPMS Sr Isotope Analysis of (Bio)Apatite—A Problem Reassessed. Journal of Analytical Atomic Spectrometry, 31(1): 259–269. https://doi.org/10.1039/c5ja00311c
Montgomery, J., Evans, J. A., Horstwood, M. S. A., 2010. Evidence for Long-Term Averaging of Strontium in Bovine Enamel Using TIMS and LA-MCICP-MS Strontium Isotope Intra-Molar Profiles. Environmental Archaeology, 15(1): 32–42. https://doi.org/10.1179/146141010x12640787648694
Nehring, F., Jacob, D. E., Barth, M. G., et al., 2008. Laser-Ablation ICP-MS Analysis of Siliceous Rock Glasses Fused on an Iridium Strip Heater Using MgO Dilution. Microchimica Acta, 160(1/2): 153–163. https://doi.org/10.1007/s00604-007-0819-7
Pearson, N. J., Alard, O., Griffin, W. L., et al., 2002. In-situ Measurement of Re-Os Isotopes in Mantle Sulfides by Laser Ablation Multicollector-Inductively Coupled Plasma Mass Spectrometry: Analytical Methods and Preliminary Results. Geochimica et Cosmochimica Acta, 66(6): 1037–1050. https://doi.org/10.1016/s0016-7037(01)00823-7
Pfeifer, M., Lloyd, N. S., Peters, S. T. M., et al., 2017. Tantalum Isotope Ratio Measurements and Isotope Abundances Determined by MC-ICP-MS Using Amplifiers Equipped with 1010, 1012 and 1013 Ohm Resistors. Journal of Analytical Atomic Spectrometry, 32(1): 130–143. https://doi.org/10.13039/501100001659
Prohaska, T., Latkoczy, C., Schultheis, G., et al., 2002. Investigation of Sr Isotope Ratios in Prehistoric Human Bones and Teeth Using Laser Ablation ICPMS and ICP-MS after Rb/Sr Separation. Journal of Analytical Atomic Spectrometry, 17(8): 887–891. https://doi.org/10.1039/b203314c
Ramos, F. C., Wolff, J. A., Tollstrup, D. L., 2004. Measuring 87Sr/86Sr Variations in Minerals and Groundmass from Basalts Using LA-MC-ICP-MS. Chemical Geology, 211(1/2): 135–158. https://doi.org/10.1016/j.chemgeo.2004.06.025
Schmidberger, S. S., Simonetti, A., Francis, D., 2003. Small-Scale Sr Isotope Investigation of Clinopyroxenes from Peridotite Xenoliths by Laser Ablation MC-ICP-MS-Implications for Mantle Metasomatism. Chemical Geology, 199(3/4): 317–329. https://doi.org/10.1016/s0009-2541(03)00125-6
Souders, A. K., Sylvester, P. J., 2008. Improved in-situ Measurements of Lead Isotopes in Silicate Glasses by LA-MC-ICPMS Using Multiple Ion Counters. Journal of Analytical Atomic Spectrometry, 23(4): 535. https://doi.org/10.1039/b713934a
Stoll, B., Jochum, K. P., Herwig, K., et al., 2008. An Automated Iridium-Strip Heater for LA-ICP-MS Bulk Analysis of Geological Samples. Geostandards and Geoanalytical Research, 32(1): 5–26. https://doi.org/10.1111/j.1751-908x.2007.00871.x
Sylvester, P. J., 2008. Matrix Effects in Laser Ablation-ICP-MS. In: Sylveter, P. J., ed., Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series, 40: 67–78
Tong, X. R., Liu, Y. S., Hu, Z. C., et al., 2016. Accurate Determination of Sr Isotopic Compositions in Clinopyroxene and Silicate Glasses by LAMC-ICP-MS. Geostandards and Geoanalytical Research, 40(1): 85–99. https://doi.org/10.1111/j.1751-908X.2015.00315.x
Vroon, P. Z., van der Wagt, B., Koornneef, J. M., et al., 2008. Problems in Obtaining Precise and Accurate Sr Isotope Analysis from Geological Materials Using Laser Ablation MC-ICPMS. Analytical and Bioanalytical Chemistry, 390(2): 465–476. https://doi.org/10.1007/s00216-007-1742-9
Waight, T., Baker, J., Peate, D., 2002. Sr Isotope Ratio Measurements by Double-Focusing MC-ICP-MS: Techniques, Observations and Pitfalls. International Journal of Mass Spectrometry, 221(3): 229–244. https://doi.org/10.1016/s1387-3806(02)01016-3
Wieser, M. E., 2006. Atomic Weights of the Elements 2005 (IUPAC Technical Report). Pure and Applied Chemistry, 78(11): 2051–2066. https://doi.org/10.1351/pac200678112051
Woodhead, J., Swearer, S., Hergt, J., et al., 2005. In-situ Sr-Isotope Analysis of Carbonates by LA-MC-ICP-MS: Interference Corrections, High Spatial Resolution and an Example from Otolith Studies. Journal of Analytical Atomic Spectrometry, 20(1): 22–27. https://doi.org/10.1039/b412730g
Xie, L. W., Yang, J. H., Yin, Q. Z., et al., 2017. High Spatial Resolution in Situ UPb Dating Using Laser Ablation Multiple Ion Counting Inductively Coupled Plasma Mass Spectrometry (LA-MIC-ICP-MS). Journal of Analytical Atomic Spectrometry, 32(5): 975–986. https://doi.org/10.1039/c6ja00387g
Xu, R., Liu, Y. S., Tong, X. R., et al., 2013. In-situ Trace Elements and Li and Sr Isotopes in Peridotite Xenoliths from Kuandian, North China Craton: Insights into Pacific Slab Subduction-Related Mantle Modification. Chemical Geology, 354: 107–123. https://doi.org/10.1016/j.chemgeo.2013.06.022
Yang, Y. H., Wu, F. Y., Liu, Z. C., et al., 2012. Evaluation of Sr Chemical Purification Technique for Natural Geological Samples Using Common Cation-Exchange and Sr-Specific Extraction Chromatographic Resin Prior to MC-ICP-MS or TIMS Measurement. Journal of Analytical Atomic Spectrometry, 27(3): 516–522. https://doi.org/10.1039/c2ja10333h
Yuan, H. L., Liu, X., Bao, Z. A., et al., 2018. A Fast Separation Method for Isotope Analysis Based on Compressed Nitrogen Gas and Ion-Exchange Chromatography Technique-A Case Study of Sr-Nd Isotope Measurement. Journal of Earth Science, 29(1): 223–229. https://doi.org/10.1007/s12583-017-0944-0
Zack, T., Hogmalm, K. J., 2016. Laser Ablation Rb/Sr Dating by Online Chemical Separation of Rb and Sr in an Oxygen-Filled Reaction Cell. Chemical Geology, 437: 120–133. https://doi.org/10.1016/j.chemgeo.2016.05.027
Zhang, B. C., He, M. H., Hang, W., et al., 2013. Minimizing Matrix Effect by Femtosecond Laser Ablation and Ionization in Elemental Determination. Analytical Chemistry, 85(9): 4507–4511. https://doi.org/10.1021/ac400072j
Zhang, L., Ren, Z. Y., Wu, Y. D., et al., 2018. Strontium Isotope Measurement of Basaltic Glasses by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry Based on a Linear Relationship between Analytical Bias and Rb/Sr Ratios. Rapid Communications in Mass Spectrometry, 32(2): 105–112. https://doi.org/10.1002/rcm.8011
Zhu, L. Y., Liu, Y. S., Hu, Z. C., et al., 2013. Simultaneous Determination of Major and Trace Elements in Fused Volcanic Rock Powders Using a Hermetic Vessel Heater and LA-ICP-MS. Geostandards and Geoanalytical Research, 37(2): 207–229. https://doi.org/10.1111/j.1751-908x.2012.00181.x
Acknowledgments
Two anonymous reviewers are thanked for the detailed comments that helped us to improve the manuscript. We highly appreciate the helpful suggestions of Dr. Wei Zhang regarding an earlier version of this manuscript. This research is co-supported by the National Natural Science Foundation of China (Nos. 41530211, 41125013, 41803012), China Postdoctoral Science Foundation (No. 2017M622546) and the Most Special Funds of the State Key Laboratory of Geological Processes and Mineral Resources (No. MSFGPMR01). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1214-0.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhu, L., Zhang, G., Liu, Y. et al. Improved in-situ Determination of Sr Isotope Ratio in Silicate Samples Using LA-MC-ICP-MS and Its Wider Application for Fused Rock Powder. J. Earth Sci. 31, 262–270 (2020). https://doi.org/10.1007/s12583-019-1214-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12583-019-1214-0