Piaoac Granites Related W-Sn Mineralization, Northern Vietnam: Evidences from Geochemistry, Zircon Geochronology and Hf Isotopes

Abstract

Piaoac granites exposed in the Cao Bang region, northern Vietnam, are S-type granite, which are associated with W-Sn-Mo-Be-F mineralization. Zircon U-Pb ages, major and trace elements, mineral chemical and Hf isotopic compositions of the W-Sn-bearing granites from the Piaoac District have been investigated in detail. LA-ICP-MS U-Pb dating of zircon grains from these granites yielded ages of 82.5±2.3 and 82±1.8 Ma, representing an episode of Late Cretaceous magmatic event. These granites are characterized by high peraluminous and have typical S-type geochemical signatures with high SiO2 (72.37 wt.%-73.07 wt.%), high A/CNK values (1.61-1.65) and Аl2О3 (14.4 wt.%-15 wt.%). They are enriched in Rb, U, K, Th, Ta and Pb and display pronounced negative Ba, Sr, Nb, Ti and Eu (Eu/Eu*=0.19-0.24) anomalies. The high degree of fractional crystallization is characterized by low Rb, Sr, Ba and Eu concentrations with high ratios of La/Sm and Eu/Eu*. Zircon grains show εHf(t) values from -9.69 to -0.9 and the corresponding TDm2 range from 1.2 to 1.7 Ga, indicating that these granites could be derived from the Proterozoic basement rocks with minor input from mantle-derived magmas. The calculation of Fe3+ and Fe2+ of biotites indicates a low oxygen fugacity condition (log \(f_{\text{O}_{2}}\) ranging from 10-17 to 10-18 bars, below MH), which is favorable for the W-Sn mineralization. Tungsten and tin have been enriched in granitic magmas through fractionation, and low oxygen fugacity conditions have promoted the accumulation and transportation of W-Sn in the hydrothermal fluids, leading to deposition of mineral phases. The geochemical data suggest that Piaoac granites formed in an extensional setting related with the Late Cretaceous magmatism occurring large-scale lithospheric extensional in South China Block.

This is a preview of subscription content, log in to check access.

References Cited

  1. Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525–541. https://doi.org/10.1093/petrology/35.2.525

    Article  Google Scholar 

  2. Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1/2/3): 51–73. https://doi.org/10.1016/s0024-4937(99)00052-3

    Google Scholar 

  3. Anh, P. L., Vladimirov, A. G., Kruk, N. N., et al., 2010. Stanniferrous Granites of Vietnam: Rb-Sr and Ar-Ar Isotope Age, Composition, Sources, and Geodynamic Formation Conditions. Doklady Earth Sciences, 432(2): 839–845. https://doi.org/10.1134/s1028334x10060280

    Article  Google Scholar 

  4. Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231–234. https://doi.org/10.1130/g37475.1

    Article  Google Scholar 

  5. Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605–626. https://doi.org/10.1016/s0024-4937(98)00085-1

    Article  Google Scholar 

  6. Barbarin, B., 1996. Genesis of the Two Main Types of Peraluminous Granitoids. Geology, 24(4): 295–298. https://doi.org/10.1130/0091-7613(1996)024<0295:gottmt>2.3.co;2

    Article  Google Scholar 

  7. Batchelor, R. A., 2003. Geochemistry of Biotite in Metabentonites as an Age Discriminant, Indicator of Regional Magma Sources and Potential Correlating Tool. Mineralogical Magazine, 67(4): 807–817. https://doi.org/10.1180/0026461036740137

    Article  Google Scholar 

  8. Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365–401. https://doi.org/10.1093/petrology/32.2.365

    Article  Google Scholar 

  9. Ben, T. X., van Hoai, N., Visnepskaya, Y. E., 1993. The Behaviour of Rare Metals in Piaoac Granite Massif, Vietnam. Journal of Southeast Asian Earth Sciences, 8(1/2/3/4): 383–386. https://doi.org/10.1016/0743-9547(93)90039-r

    Google Scholar 

  10. Blevin, P. L., Chappell, B. W., 1995. Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia; The Metallogeny of I-and S-Type Granites. Economic Geology, 90(6): 1604–1619. https://doi.org/10.2113/gsecongeo.90.6.1604

    Article  Google Scholar 

  11. Blevin, P. L., Chappell, B. W., 1992. The Role of Magma Sources, Oxidation States and Fractionation in Determining the Granite Metallogeny of Eastern Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 305–316. https://doi.org/10.1017/s0263593300007987

    Article  Google Scholar 

  12. Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258. https://doi.org/10.1016/s0012-821x(97)00040-x

    Article  Google Scholar 

  13. Breiter, K., 2012. Nearly Contemporaneous Evolution of the A-And S-Type Fractionated Granites in the Krušné Hory/Erzgebirge Mts., Central Europe. Lithos, 151: 105–121. https://doi.org/10.1016/j.lithos.2011.09.022

    Article  Google Scholar 

  14. Cao, J. Y., Yang, X. Y., Du, J. G., et al., 2018. Formation and Geodynamic Implication of the Early Yanshanian Granites Associated with W-Sn Mineralization in the Nanling Range, South China: An Overview. International Geology Review, 60(11/12/13/14): 1744–1771. https://doi.org/10.1080/00206814.2018.1466370

    Google Scholar 

  15. Chappell, B. W., 1999. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535–551. https://doi.org/10.1016/s0024-4937(98)00086-3

    Article  Google Scholar 

  16. Chappell, B. W., Bryant, C. J., Wyborn, D., 2012. Peraluminous I-Type Granites. Lithos, 153: 142–153. https://doi.org/10.1016/j.lithos.2012.07.008

    Article  Google Scholar 

  17. Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173–174

    Google Scholar 

  18. Chappell, B. W., White, A. J. R., 1992. I-And S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1–26. https://doi.org/10.1017/s0263593300007720

    Google Scholar 

  19. Chen, Z. C., Lin, W., Faure, M., et al., 2014. Geochronology and Isotope Analysis of the Late Paleozoic to Mesozoic Granitoids from Northeastern Vietnam and Implications for the Evolution of the South China Block. Journal of Asian Earth Sciences, 86: 131–150. https://doi.org/10.1016/j.jseaes.2013.07.039

    Article  Google Scholar 

  20. Cheng, Y. B., Mao, J. W., Liu, P., 2016. Geodynamic Setting of Late Cretaceous Sn-W Mineralization in Southeastern Yunnan and Northeastern Vietnam. Solid Earth Sciences, 1(3): 79–88. https://doi.org/10.1016/j.sesci.2016.12.001

    Article  Google Scholar 

  21. Cheng, Y. B., Mao, J. W., Spandler, C., 2013. Petrogenesis and Geodynamic Implications of the Gejiu Igneous Complex in the Western Cathaysia Block, South China. Lithos, 175/176: 213–229. https://doi.org/10.1016/j.lithos.2013.04.002

    Article  Google Scholar 

  22. Cheng, Y. B., Mao, J. W., Rusk, B., et al., 2012. Geology and Genesis of Kafang Cu-Sn Deposit, Gejiu District, SW China. Ore Geology Reviews, 48: 180–196. https://doi.org/10.1016/j.oregeorev.2012.03.004

    Article  Google Scholar 

  23. Cheng, Y. B., Mao, J. W., 2010. Age and Geochemistry of Granites in Gejiu Area, Yunnan Province, SW China: Constraints on Their Petrogenesis and Tectonic Setting. Lithos, 120(3/4): 258–276. https://doi.org/10.1016/j.lithos.2010.08.013

    Google Scholar 

  24. Clemens, J. D., 2003. S-Type Granitic Magmas—Petrogenetic Issues, Models and Evidence. Earth-Science Reviews, 61(1/2): 1–18. https://doi.org/10.1016/s0012-8252(02)00107-1

    Article  Google Scholar 

  25. Cobbing, E. J., Mallick, D. I. J., Pitfield, P. E. J., et al., 1986. The Granites of the Southeast Asian Tin Belt. Journal of the Geological Society, 143(3): 537–550. https://doi.org/10.1144/gsjgs.143.3.0537

    Article  Google Scholar 

  26. Dovjikov, A. E., 1965. Geology of Northern Vietnam. Technical and Scientific Publisher, Hanoi. 198 (in Vietnamese)

    Google Scholar 

  27. Dung, T. M., Anh, N. T., Hien, V. T., et al., 2013. Emplacement Age and Tectonic Significance of the Pia Oac Granite Massif, Nguyen Binh District, Cao Bang Province. Journal of Geology, 334A: 20–27 (in Vietnamese)

    Google Scholar 

  28. Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-z

    Article  Google Scholar 

  29. Ellis, D. J., Thompson, A. B., 1986. Subsolidus and Partial Melting Reactions in the Quartz-Excess CaO+MgO+Al2O3+SiO2+H2O System under Water-Excess and Water-Deficient Conditions to 10 kb: Some Implications for the Origin of Peraluminous Melts from Mafic Rocks. Journal of Petrology, 27(1): 91–121. https://doi.org/10.1093/petrology/27.1.91

    Article  Google Scholar 

  30. Faure, M., Lepvrier, C., Nguyen, V. V., et al., 2014. The South China Block-Indochina Collision: Where, When, and How?. Journal of Asian Earth Sciences, 79: 260–274. https://doi.org/10.1016/j.jseaes.2013.09.022

    Article  Google Scholar 

  31. Feng, J. R., Mao, J. W., Pei, R. F., 2012. Ages and Geochemistry of Laojunshan Granites in Southeastern Yunnan, China: Implications for W-Sn Polymetallic Ore Deposits. Mineralogy and Petrology, 107(4): 573–589. https://doi.org/10.1007/s00710-012-0253-3

    Article  Google Scholar 

  32. Fogliata, A. S., Báez, M. A., Hagemann, S. G., et al., 2012. Post-Orogenic, Carboniferous Granite-Hosted Sn-W Mineralization in the Sierras Pampeanas Orogen, Northwestern Argentina. Ore Geology Reviews, 45: 16–32. https://doi.org/10.1016/j.oregeorev.2011.12.001

    Article  Google Scholar 

  33. Förster, H. J., Tischendorf, G., Trumbull, R. B., 1997. An Evaluation of the Rb vs. (Y+Nb) Discrimination Diagram to Infer Tectonic Setting of Silicic Igneous Rocks. Lithos, 40(2/3/4): 261–293. https://doi.org/10.1016/s0024-4937(97)00032-7

    Google Scholar 

  34. Foster, M. D., 1960. Interpretation of Composition of Trioctaheral Micas. Geological Survey Professional Paper, 354(B): 1–49

    Google Scholar 

  35. Fujimaki, H., 1986. Partition Coefficients of Hf, Zr, and REE between Zircon, Apatite, and Liquid. Contributions to Mineralogy and Petrology, 94(1): 42–45. https://doi.org/10.1007/bf00371224

    Article  Google Scholar 

  36. Galfetti, T., Bucher, H., Martini, R., et al., 2008. Evolution of Early Triassic Outer Platform Paleoenvironments in the Nanpanjiang Basin (South China) and Their Significance for the Biotic Recovery. Sedimentary Geology, 204(1/2): 36–60. https://doi.org/10.1016/j.sedgeo.2007.12.008

    Article  Google Scholar 

  37. Golonka, J., Krobicki, M., Pająk, J., et al., 2006. Phanerozoic Palaeogeography of Southeast Asia. GeoLines, 20: 40–43

    Google Scholar 

  38. Gomes, M. E. P., Neiva, A. M. R., 2002. Petrogenesis of Tin-Bearing Granites from Ervedosa, Northern Portugal: The Importance of Magmatic Processes. Chemie der Erde--Geochemistry, 62(1): 47–72. https://doi.org/10.1078/0009-2819-00002

    Article  Google Scholar 

  39. Griffin, W. L., Wang, X. C., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. https://doi.org/10.1016/s0024-4937(02)00082-8

    Article  Google Scholar 

  40. Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9

    Article  Google Scholar 

  41. Henry, D. J., Guidotti, C. V., Thomson, J. A., 2005. The Ti-Saturation Surface for Low-To-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2/3): 316–328. https://doi.org/10.2138/am.2005.1498

    Article  Google Scholar 

  42. Hien, V. T., 2012. Geology Structure and Mineralization of the Sn-W Lung Muoi, Piaoac, Caobang Province, Northern Viet Nam. Thesis Hanoi University of Mining and Geology, Vietnam. 54

    Google Scholar 

  43. Hoa, T. T., Izokh, A. E., Polyakov, G. V., et al., 2008. Permo-Triassic Magmatism and Metallogeny of Northern Vietnam in Relation to the Emeishan Plume. Russian Geology and Geophysics, 49(7): 480–491. https://doi.org/10.1016/j.rgg.2008.06.005

    Article  Google Scholar 

  44. Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x

    Article  Google Scholar 

  45. Izokh, E. P., 1965. Geologica Sevemogo Vietnama. Objasnitelmaja Zapiska Geologitcheskoi Karte Severnogo Vietnama. Geology of Northern Part Vietnam. Dovijikov, A. E., ed., Sciences and Technology, Hanoi Publisher, Hanoi. 567 (in Vietnamese)

    Google Scholar 

  46. Lepvrier, C., Faure, M., van Vuong, N., et al., 2011. North-Directed Triassic Nappes in Northeastern Vietnam (East Bac Bo). Journal of Asian Earth Sciences, 41(1): 56–68. https://doi.org/10.1016/j.jseaes.2011.01.002

    Article  Google Scholar 

  47. Lehmann, B., 1990. Metallogeny of Tin. Lecture Notes in Earth Sciences. Springer-Verlag, Berlin. 211

    Google Scholar 

  48. Leloup, P. H., Lacassin, R., Tapponnier, P., et al., 1995. The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina. Tectonophysics, 251(1/2/3/4): 3–84. https://doi.org/10.1016/0040-1951(95)00070-4

    Google Scholar 

  49. Linnen, R. L., Pichavant, M., Holtz, F., 1996. The Combined Effects of ƒO2 and Melt Composition on SnO2 Solubility and Tin Diffusivity in Haplogranitic Melts. Geochimica et Cosmochimica Acta, 60(24): 4965–4976. https://doi.org/10.1016/s0016-7037(96)00295-5

    Article  Google Scholar 

  50. Linnen, R. L., Pichavant, M., Holtz, F., et al., 1995. The Effect of ƒO2 on the Solubility, Diffusion, and Speciation of Tin in Haplogranitic Melt at 850 °C and 2 kbar. Geochimica et Cosmochimica Acta, 59(8): 1579–1588. https://doi.org/10.1016/0016-7037(95)00064-7

    Article  Google Scholar 

  51. Liu, Y., Liu, H. C., Li, X. H., 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25: 552–558

    Google Scholar 

  52. Liu, Y. P., Li, Z. X., Li, H. M., et al., 2007. U-Pb Geochronology of Cassiterite and Zircon from the Dulong Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province, China. Acta Petrologica Sinica, 23: 967–976 (in Chinese with English Abstract).

    Google Scholar 

  53. Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004

    Article  Google Scholar 

  54. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082

    Article  Google Scholar 

  55. Liu, W. H., Zhang, X. J., Zhang, J., et al., 2018. Sphalerite Rb-Sr Dating and in situ Sulfur Isotope Analysis of the Daliangzi Lead-Zinc Deposit in Sichuan Province, SW China. Journal of Earth Science, 29(3): 573–586. https://doi.org/10.1007/s12583-018-0785-5

    Article  Google Scholar 

  56. Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America: Abstracts with Programs, 11(7): 468

    Google Scholar 

  57. Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronology Toolkit for Microsoft Excel. Berkeley Geochronology Center, California. 1–74

    Google Scholar 

  58. Mahood, G., Hildreth, W., 1983. Large Partition Coefficients for Trace Elements in High-Silica Rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11–30. https://doi.org/10.1016/0016-7037(83)90087-x

    Article  Google Scholar 

  59. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2

    Article  Google Scholar 

  60. Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267–294. https://doi.org/10.1007/s00126-012-0446-z

    Article  Google Scholar 

  61. Metcalfe, I., 2011. Tectonic Framework and Phanerozoic Evolution of Sundaland. Gondwana Research, 19(1): 3–21. https://doi.org/10.1016/j.gr.2010.02.016

    Article  Google Scholar 

  62. Metcalfe, I., 2006. Palaeozoic and Mesozoic Tectonic Evolution and Palaeogeography of East Asian Crustal Fragments: The Korean Peninsula in Context. Gondwana Research, 9(1/2): 24–46. https://doi.org/10.1016/j.gr.2005.04.002

    Article  Google Scholar 

  63. Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9

    Article  Google Scholar 

  64. Miller, C. F., Stoddard, E. F., Bradfish, L. J., et al., 1981. Composition of Plutonic Muscovite, Genetic Implications. Canada Mineralogist, 19: 25–34

    Google Scholar 

  65. Morley, C. K., 2012. Late Cretaceous-Early Palaeogene Tectonic Development of SE Asia. Earth-Science Reviews, 115(1/2): 37–75. https://doi.org/10.1016/j.earscirev.2012.08.002

    Article  Google Scholar 

  66. Munoz, J. L., 1992. Calculation of HF and HCl Fugacities from Biotite Compositions: Revised Equations. Geological Society of America: Abstracts with Programs, 24: 221

    Google Scholar 

  67. Nachit, H., Ibhi, A., Abia, E. H., et al., 2005. Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites. Comptes Rendus Geoscience, 337(16): 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002

    Article  Google Scholar 

  68. Nowell, G. M., Kempton, P. D., Noble, S. R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149(3/4): 211–233. https://doi.org/10.1016/s0009-2541(98)00036-9

    Article  Google Scholar 

  69. Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  70. Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745

    Article  Google Scholar 

  71. Phan, T. T., Ngo, V. L., Nguyen, V. H., et al., 2012. Late Quaternary Tectonics and Seismotectonics along the Red River Fault Zone, North Vietnam. Earth-Science Reviews, 114(3/4): 224–235. https://doi.org/10.1016/j.earscirev.2012.06.008

    Article  Google Scholar 

  72. Philpotts, J. A., Schnetzler, C. C., 1970. Phenocryst-Matrix Partition Coefficients for K, Rb, Sr and Ba, with Applications to Anorthosite and Basalt Genesis. Geochimica et Cosmochimica Acta, 34(3): 307–322. https://doi.org/10.1016/0016-7037(70)90108-0

    Article  Google Scholar 

  73. Qiu, L., Yan, D. P., Yang, W. X., et al., 2016. Early to Middle Triassic Sedimentary Records in the Youjiang Basin, South China: Implications for Indosinian Orogenesis. Journal of Asian Earth Sciences, 141: 125–139. https://doi.org/10.1016/j.jseaes.2016.09.020

    Article  Google Scholar 

  74. Rice, C. M., Darke, K. E., Still, J. W., et al., 1998. Tungsten-Bearing Rutile from the Kori Kollo Gold Mine, Bolivia. Mineralogical Magazine, 62(3): 421–429. https://doi.org/10.1180/002646198547684

    Article  Google Scholar 

  75. Richards, J. P., Dang, G., Dudka, S. F., et al., 2003. The Nui Phao Tungsten-Fluorite-Copper-Gold-Bismuth Deposit, Northern Vietnam: An Opportunity for Sustainable Development. Exploration and Mining Geology, 12(1/2/3/4): 61–70. https://doi.org/10.2113/0120061

    Google Scholar 

  76. Roger, F., Maluski, H., Lepvrier, C., et al., 2012. LA-ICPMS Zircons U/Pb Dating of Permo-Triassic and Cretaceous Magmatisms in Northern Vietnam--Geodynamical Implications. Journal of Asian Earth Sciences, 48: 72–82. https://doi.org/10.1016/j.jseaes.2011.12.012

    Article  Google Scholar 

  77. Roger, F., Leloup, P. H., Jolivet, M., et al., 2000. Long and Complex Thermal History of the Song Chay Metamorphic Dome (Northern Vietnam) by Multi-System Geochronology. Tectonophysics, 321(4): 449–466. https://doi.org/10.1016/s0040-1951(00)00085-8

    Article  Google Scholar 

  78. Romer, R. L., Kroner, U., 2016. Phanerozoic Tin and Tungsten Mineralization—Tectonic Controls on the Distribution of Enriched Protoliths and Heat Sources for Crustal Melting. Gondwana Research, 31: 60–95. https://doi.org/10.1016/j.gr.2015.11.002

    Article  Google Scholar 

  79. Sanematsu, K., Ishihara, S., 2011. 40Ar/39Ar Ages of the Da Lien Granite Related to the Nui Phao W Mineralization in Northern Vietnam. Resource Geology, 61(3): 304–310. https://doi.org/10.1111/j.1751-3928.2011.00167.x

    Article  Google Scholar 

  80. Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683–687. https://doi.org/10.1126/science.1061372

    Article  Google Scholar 

  81. Shabani, A. A. T., Lalonde, A. E., Whalen, J. B., 2003. Composition of Biotite from Granitic Rocks of the Canadian Appalachian Orogen: A Potential Tectonomagmatic Indicator?. The Canadian Mineralogist, 41(6): 1381–1396. https://doi.org/10.2113/gscanmin.41.6.1381

    Article  Google Scholar 

  82. Sheng, J. F., Liu, L. J., Wang, D., et al., 2015. A Preliminary Review of Metallogenic Regularity of Tungsten Deposits in China. Acta Geologica Sinica--English Edition, 89(4): 1359–1374. https://doi.org/10.1111/1755-6724.12533

    Article  Google Scholar 

  83. Stussi, J. M., Cuney, M., 1996. Nature of Biotites from Alkaline, Calc-Alkaline and Peraluminous Magmas by Abdel-Fattah M. Abdel-Rahman: A Comment. Journal of Petrology, 37(5): 1025–1029. https://doi.org/10.1093/petrology/37.5.1025

    Article  Google Scholar 

  84. Sun, W. D., 2016. Initiation and Evolution of the South China Sea: An Overview. Acta Geochimica, 35(3): 215–225. https://doi.org/10.1007/s11631-016-0110-x

    Article  Google Scholar 

  85. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  86. Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29–44. https://doi.org/10.1016/s0024-4937(98)00024-3

    Google Scholar 

  87. Tapponnier, P., Lacassin, R., Leloup, P., et al., 1990. The Ailao Shan/Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 343(6257): 431–437. https://doi.org/10.1038/343431a0

    Article  Google Scholar 

  88. Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London. 57–72

    Google Scholar 

  89. Teixeira, R. J. S., Neiva, A. M. R., Gomes, M. E. P., et al., 2012. The Role of Fractional Crystallization in the Genesis of Early Syn-D3, Tin-Mineralized Variscan Two-Mica Granites from the Carrazeda de Ansiães Area, Northern Portugal. Lithos, 153: 177–191. https://doi.org/10.1016/j.lithos.2012.04.024

    Article  Google Scholar 

  90. Thanh, N. X., Hai, T. T., Hoang, N., et al., 2014. Backarc Mafic-Ultramafic Magmatism in Northeastern Vietnam and Its Regional Tectonic Significance. Journal of Asian Earth Sciences, 90: 45–60. https://doi.org/10.1016/j.jseaes.2014.04.001

    Article  Google Scholar 

  91. Thanh, N. X., Tu, M. T., Itaya, T., et al., 2011. Chromian-Spinel Compositions from the Bo Xinh Ultramafics, Northern Vietnam: Implications on Tectonic Evolution of the Indochina Block. Journal of Asian Earth Sciences, 42(3): 258–267. https://doi.org/10.1016/j.jseaes.2011.02.004

    Article  Google Scholar 

  92. Tri, T. V., Khuc, V., 2011. Geology and Earth Resources of Vietnam. General Dept of Geology, and Minerals of Vietnam. Publishing House for Science and Technology, Hanoi

    Google Scholar 

  93. Tri, T. V., 1979. Geology of Vietnam: the North Part. Explanatory Note to the Geological Map on 1: 1 000 000 Scales. Science and Technology. Publish House, Hanoi. 345 (in Vietnamese), 78 (in English)

    Google Scholar 

  94. Vladimirov, A. G., Anh, P. L., Kruk, N. N., et al., 2012. Petrology of the Tin-Bearing Granite-Leucogranites of the Piaoak Massif, Northern Vietnam. Petrology, 20(6): 545–566. https://doi.org/10.1134/s0869591112050074

    Article  Google Scholar 

  95. Wang, D. S., Liu, J. L., Tran, M., et al., 2011. Geochronology, Geochemistry and Tectonic Significance of Granites in the Tinh Tuc Sn-W Deposits, Northeast Vietnam. Acta Petrologica Sinica, 27: 2795–2808 (in Chinese with English Abstract).

    Google Scholar 

  96. Wang, D. Z., Liu, C. S., Shen, W. Z., et al., 1993. The Contrast between Tonglu I-Type and Xiangshan S-Type Clasto-Porphyritic Lava. Acta Petrologica Sinica, 9 (1): 44–53 (in Chinese with English Abstract)

    Google Scholar 

  97. Wang, P. L., Lo, C. H., Chung, S. L., et al., 2000. Onset Timing of Left-Lateral Movement along the Ailao Shan-Red River Shear Zone: 40Ar/39Ar Dating Constraint from the Nam Dinh Area, Northeastern Vietnam. Journal of Asian Earth Sciences, 18(3): 281–292. https://doi.org/10.1016/s1367-9120(99)00064-4

    Article  Google Scholar 

  98. Wang, X. Y., Yang, Z., Chen, N. S., et al., 2018. Petrogenesis and Ore Genesis of the Late Yanshanian Granites and Associated Porphyry-Skarn W-Mo Deposits from the Yunkai Area of South China: Evidence from the Zircon U-Pb Ages, Hf Isotopes and Sulfide S-Fe Isotopes. Journal of Earth Science, 29(4): 939–959. https://doi.org/10.1007/s12583-017-0901-1

    Article  Google Scholar 

  99. Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821x(83)90211-x

    Article  Google Scholar 

  100. Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202

    Article  Google Scholar 

  101. Whalen, J. B., 1985. Geochemistry of an Island-Arc Plutonic Suite: The Uasilau-Yau Yau Intrusive Complex, New Britain, P.N.G.. Journal of Petrology, 26(3): 603–632. https://doi.org/10.1093/petrology/26.3.603

    Article  Google Scholar 

  102. White, A. J. R., 1979. Sources of Granitic Magma. Abstracts of Papers to be Presented at the Annual Meetings of the Geological Society of America and Associated Societies, November 5–8, 1979, San Diego, California. 11: 539

    Google Scholar 

  103. Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x

    Article  Google Scholar 

  104. Wones, D. R., Eugster, H. P., 1965. Stability of Biotite: Experiment, Theory, and Application. American Mineralogist, 50: 1228-1272

    Google Scholar 

  105. Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003

    Article  Google Scholar 

  106. Xu, B., Jiang, S. Y., Wang, R., et al., 2015. Late Cretaceous Granites from the Giant Dulong Sn-Polymetallic Ore District in Yunnan Province, South China: Geochronology, Geochemistry, Mineral Chemistry and Nd-Hf Isotopic Compositions. Lithos, 218/219: 54–72. https://doi.org/10.1016/j.lithos.2015.01.004

    Article  Google Scholar 

  107. Yan, D. P., Zhou, M. F., Wang, Y., 2005. Structural Styles and Chronological Evidences from Dulong-Song Chay Tectonic Dome: Earlier Spreading of South China Sea Basin Due to Late Mesozoic to Early Cenozoic Extension of South China Block. Earth Science--Journal of China University of Geosciecnces, 30(4): 402–412

    Google Scholar 

  108. Yurimoto, H., Duke, E. F., Papike, J. J., et al., 1990. Are Discontinuous Chondrite-Normalized REE Patterns in Pegmatitic Granite Systems the Results of Monazite Fractionation?. Geochimica et Cosmochimica Acta, 54(7): 2141–2145. https://doi.org/10.1016/0016-7037(90)90277-r

    Article  Google Scholar 

  109. Zhang, R. Y., Lo, C. H., Chung, S. L., et al., 2013. Origin and Tectonic Implication of Ophiolite and Eclogite in the Song Ma Suture Zone between the South China and Indochina Blocks. Journal of Metamorphic Geology, 31(1): 49–62. https://doi.org/10.1111/jmg.12012

    Article  Google Scholar 

  110. Zhao, K. D., Jiang, S. Y., Jiang, Y. H., et al., 2005. Mineral Chemistry of the Qitianling Granitoid and the Furong Tin Ore Deposit in Hunan Province, South China: Implication for the Genesis of Granite and Related Tin Mineralization. European Journal of Mineralogy, 17(4): 635–648. https://doi.org/10.1127/0935-1221/2005/0017-0635

    Article  Google Scholar 

  111. Zhao, Z. Y., Hou, L., Ding, J., et al., 2018. A Genetic Link between Late Cretaceous Granitic Magmatism and Sn Mineralization in the Southwestern South China Block: A Case Study of the Dulong Sn-Dominant Polymetallic Deposit. Ore Geology Reviews, 93: 268–289. https://doi.org/10.1016/j.oregeorev.2017.12.020

    Article  Google Scholar 

  112. Zhou, Z. X., 1986. The Origin of Intrusive Mass in Fengshandong, Hubei Province. Acta Petrologica Sinica, 2: 59–70 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key R & D Program of China (No. 2016YFC0600404) and the National Natural Science Foundation of China (Nos. 41673040 and 41611540339). The authors are grateful to Hou Z H, Deng J H, Gu H L, Qi H S, Ren Y S, and Shu S Y, for assistance in zircon U-Pb dating and Lu-Hf isotope analyses. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0865-6.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Yang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.A., Yang, X., Thi, H.V. et al. Piaoac Granites Related W-Sn Mineralization, Northern Vietnam: Evidences from Geochemistry, Zircon Geochronology and Hf Isotopes. J. Earth Sci. 30, 52–69 (2019). https://doi.org/10.1007/s12583-018-0865-6

Download citation

Key words

  • geochemistry
  • zircon U-Pb age
  • Hf isotope
  • Piaoac granite
  • W-Sn mineralization
  • Northern Vietnam