Skip to main content
Log in

Development of Geothermal Resources in China: A Review

  • Geothermics
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Geothermal resources in China are distributed throughout the country, with hydrothermal systems of high temperature in the Tibet Autonomous Region, Yunnan Province and Taiwan Island and hydrothermal systems of low-medium temperature mainly in various sedimentary basins. Development and exploration of geothermal energy in China are below expectations. The purpose of this study is to comparatively review the characteristics (geology, hydrogeology, hydrochemistry and geophysical data) of typical hydrothermal fields/areas and suggest development and utilization approaches in the future. Hydrothermal systems formed by mountain lifting contain a considerable amount of energy for geothermal power generation, especially in the Tibet Autonomous Region, Yunnan Province and Taiwan Island. However, geothermal water in the Tatun geothermal field has high TDS (total dissolved solids), an issue that requires more research to resolve this problem for power generation. The large storage of geothermal resources has been investigated in Meso–Cenozoic sedimentary basins; it is basically used for heating, bathing or greenhouse plantation. Moreover, hydrothermal resources of low-medium temperature can also be used in binary power plants. Although the enhanced geothermal systems (EGS) in China are promising, the resources have not yet been commercially exploited, because the emerging technologies (hydraulic fracturing) and concerns over environmental impacts (induced micro-seismicity) lead to slow development. On the contrary, shallow geothermal energy has been directly utilized mainly for heating and cooling buildings. Cities like Beijing, Tianjin and Shenyang have established a series of ground-source heat-pump systems, which has led to a massive reduction of CO2 emission of 19.87×106 t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • An, K. S., Huang, S. Y., 1980. Geothermal Resources in China. Oil & Gas Science and Technology, 35: 449–460 (in Chinese with English Abstract)

    Google Scholar 

  • Ayub, M., Mitsos, A., Ghasemi, H., 2015. Thermo-Economic Analysis of a Hybrid Solar-Binary Geothermal Power Plant. Energy, 87: 326–335. https://doi.org/10.1016/j.energy.2015.04.106

    Article  Google Scholar 

  • Azzi, M., Duc, H., Ha, Q. P., 2015. Toward Sustainable Energy Usage in the Power Generation and Construction Sectors—A Case Study of Australia. Automation in Construction, 59: 122–127. https://doi.org/10.1016/j.autcon.2015.08.001

    Article  Google Scholar 

  • Bai, D. H., Meju, M. A., 2003. Deep Structure of the Longling-Ruili Fault underneath Ruili Basin near the Eastern Himalayan Syntaxis: Insights from Magnetotelluric Imaging. Tectonophysics, 364(3/4): 135–146. https://doi.org/10.1016/s0040-1951(03)00054-4

    Article  Google Scholar 

  • Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358–362. https://doi.org/10.1038/ngeo830

    Article  Google Scholar 

  • Bai, L., Li, G. H., Khan, N. G., et al., 2017. Focal Depths and Mechanisms of Shallow Earthquakes in the Himalayan-Tibetan Region. Gondwana Research, 41: 390–399. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Barbier, E., 2002. Geothermal Energy Technology and Current Status: An Overview. Renewable and Sustainable Energy Reviews, 6(1/2): 3–65. https://doi.org/10.1016/s1364-0321(02)00002-3

    Article  Google Scholar 

  • Baria, R., Jung, R., Tishner, T., et al., 2006. Creation of an HDR Reservoir at 5 000 m Depth at the European HDR Project. Thirty-First Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford. 8

    Google Scholar 

  • Bilgili, M., Ozbek, A., Sahin, B., et al., 2015. An Overview of Renewable Electric Power Capacity and Progress in New Technologies in the World. Renewable and Sustainable Energy Reviews, 49: 323–334. https://doi.org/10.1016/j.rser.2015.04.148

    Article  Google Scholar 

  • Blum, P., Campillo, G., Münch, W., et al., 2010. CO2 Savings of Ground Source Heat Pump Systems—A Regional Analysis. Renewable Energy, 35(1): 122–127. https://doi.org/10.1016/j.renene.2009.03.034

    Article  Google Scholar 

  • Bonte, M., van Breukelen, B. M., Stuyfzand, P. J., 2013. Temperature-Induced Impacts on Groundwater Quality and Arsenic Mobility in Anoxic Aquifer Sediments Used for both Drinking Water and Shallow Geothermal Energy Production. Water Research, 47(14): 5088–5100. https://doi.org/10.1016/j.watres.2013.05.049

    Article  Google Scholar 

  • BP (British Petroleum), 2017. Geothermal Power. [2017-3-11] http://www.bp.com/en/global

    Google Scholar 

  • Brown, D. W., Duchane, D. V., 1999. Scientific Progress on the Fenton Hill HDR Project since 1983. Geothermics, 28(4/5): 591–601. https://doi.org/10.1016/s0375-6505(99)00030-9

    Article  Google Scholar 

  • Chamorro, C. R., García-Cuesta, J. L., Mondéjar, M. E., et al., 2014. Enhanced Geothermal Systems in Europe: An Estimation and Comparison of the Technical and Sustainable Potentials. Energy, 65: 250–263. https://doi.org/10.1016/j.energy.2013.11.078

    Article  Google Scholar 

  • Chen, M. X., 1991. Distribution and Utilization of Geothermal Resources in China. Natural Resources, 5: 40–46 (in Chinese with English Abstract)

    Google Scholar 

  • Chen, M. X., Wang, J. Y., Deng, X., 1994. Geothermal Resources in China—Formation Characteristics and Potential Evaluation. Science Press, Beijing. 95–97 (in Chinese with English Abstract)

    Google Scholar 

  • Criss, R. E., 2015. Use of Geochemical and Geophysical Techniques to Characterize and Prospect for Geothermal Resources and Hydrothermal Ore Deposits. Journal of Earth Science, 26(1): 73–77. https://doi.org/10.1007/s12583-015-0510-6

    Article  Google Scholar 

  • Duo, J., 2011. Recommends on Exploitation of the High Temperature Geothermal Resources in Tibet. The 13th Annual Meeting of China Association for Science and Technology—Seminar on Development and Utilization of Geothermal Energy and Low Carbon Economy, Tianjin. 11–13 (in Chinese)

    Google Scholar 

  • Dor, J., Zhao, P., 2000. Characteristics and Genesis of the Yangbajing Geothermal Field, Tibet. Proceedings World Geothermal Congress, May 28–June 10, 2000, Kyushu-Tohoku

    Google Scholar 

  • Evans, K. F., 2005. Permeability Creation and Damage Due to Massive Fluid Injections into Granite at 3.5 km at Soultz: 2. Critical Stress and Fracture Strength. Journal of Geophysical Research: Solid Earth, 110(B4): 387–405. https://doi.org/10.1029/2004jb003169

    Google Scholar 

  • Ferguson, G., Woodbury, A. D., 2006. Observed Thermal Pollution and Post-Development Simulations of Low-Temperature Geothermal Systems in Winnipeg, Canada. Hydrogeology Journal, 14(7): 1206–1215. https://doi.org/10.1007/s10040-006-0047-y

    Article  Google Scholar 

  • Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887–1898. https://doi.org/10.1016/j.apgeochem.2012.07.006

    Article  Google Scholar 

  • Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed via Magmatic Fluid Absorption or Geothermal Steam Heating?. Bulletin of Volcanology, 76(10): 1–12. https://doi.org/10.1007/s00445-014-0868-9

    Article  Google Scholar 

  • Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science—Journal of China University of Geosciences, 42(2): 286–297. https://doi.org/10.3799/dqkx.2017.021 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215/216: 61–73. https://doi.org/10.1016/j.jvolgeores.2011.12.003

    Article  Google Scholar 

  • Guo, Q. H., Wang, Y. X., Liu, W., 2009. Hydrogeochemistry and Environmental Impact of Geothermal Waters from Yangyi of Tibet, China. Journal of Volcanology and Geothermal Research, 180(1): 9–20. https://doi.org/10.1016/j.jvolgeores.2008.11.034

    Article  Google Scholar 

  • Haehnlein, S., Bayer, P., Blum, P., 2010. International Legal Status of the Use of Shallow Geothermal Energy. Renewable and Sustainable Energy Reviews, 14(9): 2611–2625. https://doi.org/10.1016/j.rser.2010.07.069

    Article  Google Scholar 

  • Hähnlein, S., Bayer, P., Ferguson, G., et al., 2013. Sustainability and Policy for the Thermal Use of Shallow Geothermal Energy. Energy Policy, 59: 914–925. https://doi.org/10.1016/j.enpol.2013.04.040

    Article  Google Scholar 

  • Han, Z. S., 2008. Awareness to the Exploration and Evaluation of Shallow Geothermal Energy. Construction & Design for Project, 1: 14–16 (in Chinese with English Abstract)

    Google Scholar 

  • He, L. J., 2015. Thermal Regime of the North China Craton: Implications for Craton Destruction. Earth-Science Reviews, 140: 14–26. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Hébert, R. L., Ledésert, B., Bartier, D., et al., 2010. The Enhanced Geothermal System of Soultz-Sous-Forêts: A Study of the Relationships between Fracture Zones and Calcite Content. Journal of Volcanology and Geothermal Research, 196(1/2): 126–133. https://doi.org/10.1016/j.jvolgeores.2010.07.001

    Article  Google Scholar 

  • Ho, C. S., 1986. A Synthesis of the Geologic Evolution of Taiwan. Tectonophysics, 125(1/2/3): 1–16. https://doi.org/10.1016/0040-1951(86)90004-1

    Article  Google Scholar 

  • Hochstein, M. P., Regenauer-Lieb, K., 1998. Heat Generation Associated with Collision of Two Plates: The Himalayan Geothermal Belt. Journal of Volcanology and Geothermal Research, 83(1/2): 75–92. https://doi.org/10.1016/s0377-0273(98)00018-3

    Article  Google Scholar 

  • Hua, Y. P., Oliphant, M., Hu, E. J., 2016. Development of Renewable Energy in Australia and China: A Comparison of Policies and Status. Renewable Energy, 85: 1044–1051. https://doi.org/10.1016/j.renene.2015.07.060

    Article  Google Scholar 

  • Huang, H. F., Goff, F., 1986. Hydrogeochemistry and Reservoir Model of Fuzhou Geothermal Field, China. Journal of Volcanology and Geothermal Research, 27(3/4): 203–227. https://doi.org/10.1016/0377-0273(86)90014-4

    Article  Google Scholar 

  • Huang, S. P., 2012. Geothermal Energy in China. Nature Climate Change, 2(8): 557–560. https://doi.org/10.1038/nclimate1598

    Article  Google Scholar 

  • Huang, S. B., Li, X., Liu, C. R., 2007. Study on Characteristics and Control Factors of Underground Hot Water in Area of Longling, Yunnan. Research of Soil and Water Conservation, 14(3): 147–149 (in Chinese with English Abstract)

    Google Scholar 

  • Kearey, P., Wei, H. B., 1993. Geothermal Fields of China. Journal of Volcanology and Geothermal Research, 56(4): 415–428. https://doi.org/10.1016/0377-0273(93)90006-d

    Article  Google Scholar 

  • Keçebaş, A., Gökgedik, H., 2015. Thermodynamic Evaluation of a Geothermal Power Plant for Advanced Exergy Analysis. Energy, 88: 746–755. https://doi.org/10.1016/j.energy.2015.05.094

    Article  Google Scholar 

  • Konstantinou, K. I., Lin, C. H., Liang, W. T., 2007. Seismicity Characteristics of a Potentially Active Quaternary Volcano: The Tatun Volcano Group, Northern Taiwan. Journal of Volcanology and Geothermal Research, 160(3/4): 300–318. https://doi.org/10.1016/j.jvolgeores.2006.09.009

    Article  Google Scholar 

  • Konstantinou, K. I., Lin, C. H., Liang, W. T., et al., 2009. Seismogenic Stress Field beneath the Tatun Volcano Group, Northern Taiwan. Journal of Volcanology and Geothermal Research, 187(3/4): 261–271. https://doi.org/10.1016/j.jvolgeores.2009.09.011

    Article  Google Scholar 

  • Li, J. X., Guo, Q. H., Wang, Y. X., 2015. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface: A Case Study in Rehai Geothermal Field, Tengchong. Earth Science—Journal of China University of Geosciences, 40(9): 1576–1584. https://doi.org/10.3799/dqkx.2015.142 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Li, L. G., Li, B. X., 2017. A Discussion on the Heat Source Mechanism and Geothermal System of Gonghe-Guide Basin and Mountain Geothermal Field in Qinghai Province. Geophysical and Geochemical Exploration, 41(1): 29–34. https://doi.org/10.11720/wtyht.2017.1.05 (in Chinese with English Abstract)

    Google Scholar 

  • Liao, Z. J., 1982. Setting of the Geothermal Activities of Xizang (Tibet) and a Discussion of Associated Heat Source Problems. Acta Scientiarum Naturalium Universitatis Pekinensis, 24: 70–78 (in Chinese with English Abstract)

    Google Scholar 

  • Liao, Z. J., 2012. Deep-Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 26: 85–98. https://doi.org/10.3969/j.issn.1000-8527.2012.01.009 (in Chinese with English Abstract)

    Google Scholar 

  • Ling, W. J., Liu, Z. M., Wang, W. L., et al., 2013. Assessment of Geothermal Resources and Its Potential in China. Geology in China, 40: 312–321. https://doi.org/10.3969/j.issn.1000-3657.2013.01.021 (in Chinese with English Abstract)

    Google Scholar 

  • Ling, W. J., Wu, Q. H., Wang, G. L., 2012. Evaluation of Shallow Geothermal Energy Potential in China and Its Environmental Effects Analysis. Journal of Arid Land Resources and Environment, 26: 57–61 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, C. C., Maity, J. P., Jean, J. S., et al., 2012. Geochemical Characteristics of the Mud Volcano Fluids in Southwestern Taiwan and Their Possible Linkage to Elevated Arsenic Concentration in Chianan Plain Groundwater. Environmental Earth Sciences, 66(5): 1513–1523. https://doi.org/10.1007/s12665-011-1391-3

    Article  Google Scholar 

  • Liu, S. M., 1992. Geothermal Resources in Taiwan. Geology in China, 5: 25–28 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y. T., 2009. A Study of Hydrochemistry and Geyser of Thermal Ground Water in the Banglazhang Geothermal Field in Longling, Yunnan: [Dissertation]. China University of Geosciences, Beijing. 34–40 (in Chinese with English Abstract)

    Google Scholar 

  • Lu, G. P., Liu, R. F., 2015. Aqueous Chemistry of Typical Geothermal Springs with Deep Faults in Xinyi and Fengshun in Guangdong Province, China. Journal of Earth Science, 26(1): 60–72. https://doi.org/10.1007/s12583-015-0498-y

    Article  Google Scholar 

  • Lu, H. Y., 2014. Application of Water Chemistry as a Hydrological Tracer in a Volcano Catchment Area: A Case Study of the Tatun Volcano Group, North Taiwan. Journal of Hydrology, 511: 825–837. https://doi.org/10.1016/j.jhydrol.2014.02.036

    Article  Google Scholar 

  • Lund, J. W., Freeston, D. H., Boyd, T. L., 2011. Direct Utilization of Geothermal Energy 2010 Worldwide Review. Geothermics, 40(3): 159–180. https://doi.org/10.1016/j.geothermics.2011.07.004

    Article  Google Scholar 

  • Ma, F. R., Lin, L., Wang, Y. P., et al., 2006. Discussion on the Sustainable Exploitation and Utilization of Geothermal Resources in Tianjin. Geological Survey and Research, 29(3): 222–228 (in Chinese with English Abstract)

    Google Scholar 

  • Ma, J. T., Bao, X. H., Cao, J. F., et al., 2013. Analysis on Utilization Conditions of Shallow Geothermal Energy in Changchun. Geoscience, 27: 460–467 (in Chinese with English Abstract)

    Google Scholar 

  • Majer, E. L., Baria, R., Stark, M., et al., 2007. Induced Seismicity Associated with Enhanced Geothermal Systems. Geothermics, 36(3): 185–222. https://doi.org/10.1016/j.geothermics.2007.03.003

    Article  Google Scholar 

  • Majer, E. L., Peterson, J. E., 2007. The Impact of Injection on Seismicity at the Geysers, California Geothermal Field. International Journal of Rock Mechanics and Mining Sciences, 44(8): 1079–1090. https://doi.org/10.1016/j.ijrmms.2007.07.023

    Article  Google Scholar 

  • McClure, M. W., Horne, R. N., 2014. An Investigation of Stimulation Mechanisms in Enhanced Geothermal Systems. International Journal of Rock Mechanics and Mining Sciences, 72: 242–260. https://doi.org/10.1016/j.ijrmms.2014.07.011

    Article  Google Scholar 

  • Michaelides, E. E., 2016. Future Directions and Cycles for Electricity Production from Geothermal Resources. Energy Conversion and Management, 107: 3–9. https://doi.org/10.1016/j.enconman.2015.07.057

    Article  Google Scholar 

  • Mignan, A., Landtwing, D., Kästli, P., et al., 2015. Induced Seismicity Risk Analysis of the 2006 Basel, Switzerland, Enhanced Geothermal System Project: Influence of Uncertainties on Risk Mitigation. Geothermics, 53: 133–146. https://doi.org/10.1016/j.geothermics.2014.05.007

    Article  Google Scholar 

  • Molnar, P., Lyon-Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123–154. https://doi.org/10.1111/j.1365-246x.1989.tb02020.x

    Article  Google Scholar 

  • Noblet, C. L., Teisl, M. F., Evans, K., et al., 2015. Public Preferences for Investments in Renewable Energy Production and Energy Efficiency. Energy Policy, 87: 177–186. https://doi.org/10.1016/j.enpol.2015.09.003

    Article  Google Scholar 

  • Purnomo, B. J., Pichler, T., 2014. Geothermal Systems on the Island of Java, Indonesia. Journal of Volcanology and Geothermal Research, 285: 47–59. https://doi.org/10.13039/100004807

    Article  Google Scholar 

  • Quenette, S., Xi, Y. F., Mansour, J., et al., 2015. Underworld-GT Applied to Guangdong, a Tool to Explore the Geothermal Potential of the Crust. Journal of Earth Science, 26(1): 78–88. https://doi.org/10.1007/s12583-015-0517-z

    Article  Google Scholar 

  • Qiang, M. R., Chen, F. H., Song, L., et al., 2013. Late Quaternary Aeolian Activity in Gonghe Basin, Northeastern Qinghai-Tibetan Plateau, China. Quaternary Research, 79(3): 403–412. https://doi.org/10.1016/j.yqres.2013.03.003

    Article  Google Scholar 

  • Qiu, N. S., Zuo, Y. H., Chang, J., et al., 2014. Geothermal Evidence of Meso–Cenozoic Lithosphere Thinning in the Jiyang Sub-Basin, Bohai Bay Basin, Eastern North China Craton. Gondwana Research, 26(3/4): 1079–1092. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Regenauer-Lieb, K., Yuen, D. A., Qi, S. H., et al., 2015. Foreword: Toward a Quantitative Understanding of the Frontier in Geothermal Energy. Journal of Earth Science, 26(1): 1–1. https://doi.org/10.1007/s12583-015-0601-4

    Article  Google Scholar 

  • Rosiek, S., Batlles, F. J., 2012. Shallow Geothermal Energy Applied to a Solar-Assisted Air-Conditioning System in Southern Spain: Two-Year Experience. Applied Energy, 100: 267–276. https://doi.org/10.1016/j.apenergy.2012.05.041

    Article  Google Scholar 

  • Rybach, L., Eugster, W. J., 2010. Sustainability Aspects of Geothermal Heat Pump Operation, with Experience from Switzerland. Geothermics, 39(4): 365–369. https://doi.org/10.1016/j.geothermics.2010.08.002

    Article  Google Scholar 

  • Safari, R., Ghassemi, A., 2015. 3D Thermo-Poroelastic Analysis of Fracture Network Deformation and Induced Micro-Seismicity in Enhanced Geothermal Systems. Geothermics, 58: 1–14. https://doi.org/10.1016/j.geothermics.2015.06.010

    Article  Google Scholar 

  • Tan, H. B., Zhang, W. J., Chen, J. S., et al., 2012. Isotope and Geochemical Study for Geothermal Assessment of the Xining Basin of the Northeastern Tibetan Plateau. Geothermics, 42: 47–55. https://doi.org/10.1016/j.geothermics.2012.01.001

    Article  Google Scholar 

  • Tao, Q. F., 2015. A New Round of Survey and Assessment of Geothermal Resources in China. Proceedings World Geothermal Congress, April 19–25, 2015, Melbourne

    Google Scholar 

  • Tian, G. H., Wang, B., Liu, D. L., 2015. Development Dynamic, Existing Problems and Countermeasures of Geothermal Resources in Tianjin, China. Proceedings World Geothermal Congress, April 19–25, 2015, Melbourne

    Google Scholar 

  • Wang, G., Li, K., Wen, D., et al., 2013. Assessment of Geothermal Resources in China. Proceedings, 38 Workshop on Geothermal Reservoir Engineering, Stanford University, Febuary 11–13, 2013, Stanford

    Google Scholar 

  • Wang, G. L., Ling, W. J., Han, Y.Y., et al., 2007. The Shallow Geothermal Energy Research Situation and Works which have to be Done. Construction and Design for Project, 11: 1–4 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science and Technology Review, 30: 25–31. https://doi.org/10.3981/j.issn.1000-7857.2012.322.003

    Google Scholar 

  • Wang, J. Y., Huang, S. P., 1990. Summary of Heat Flow Data from the Continental Area of China. Seismology and Geology, 12: 351–366 (in Chinese)

    Google Scholar 

  • Wang, S., 2013. Geothermal Resources Characteristics and Exploitation Suggestion for the Xinzhou Geothermal Field in Yangjiang City, Guangdong. Ground Water, 35(1): 42–44

    Google Scholar 

  • Wei, W. S., Li, N. B., Yang, J. W., et al., 2009. The Problems on Exploitation and Utilization of Shallow Geothermal Energy. Geothermal Energy, 3: 17–19 (in Chinese with English Abstract)

    Google Scholar 

  • Xing, H. L., Liu, Y., Gao, J. F., et al., 2015. Recent Development in Numerical Simulation of Enhanced Geothermal Reservoirs. Journal of Earth Science, 26(1): 28–36. https://doi.org/10.1007/s12583-015-0506-2

    Article  Google Scholar 

  • Xiong, S. B., Jin, D. M., Sun, K. Z., et al., 1991. Some Characteristics of Deep Structure of the Zhangzhou Geothermal Field and Itʼs Neighborhood in the Fujian Province. Acta Geophysica Sinica, 34: 55–63 (in Chinese)

    Google Scholar 

  • Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(2): 224–233. https://doi.org/10.1002/cjg2.1604

    Article  Google Scholar 

  • Xue, J. Q., Gan, B., Li, B. X., et al., 2013. Geological-Geophysical Characteristics of Enhanced Geothermal Systems (Hot Dry Rocks) in Gonghe-Guide Basin. Geophysical and Geochemical Exploration, 37: 35–41 (in Chinese with English Abstract)

    Google Scholar 

  • Xue, N., Chen, Z. J., 2003. A Summary Study on Distribution and Utilization of Geothermal Resources in Fujian Province. Fujian Energy Exploitation and Saving, 2: 15–18 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, H. L., Zheng, K. B., Zheng, K. Y., et al., 2010. Large-Scale Development and Utilization of Shallow Geothermal Energy in China. Geothermal Energy in China: Achievements and Prospects. The 40th Anniversary on Li Siguang Promoting Geothermal Energy Exploitation and Utilization in China and Seminar on Geothermal Development in China, October 15–18, 2010, Beijing. 97–115

    Google Scholar 

  • Yang, R. H., Zou, S. H., Liu, C. X., 2011. Preliminary Discussion on the Development and Utilization of Shallow Geothermal Energy. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 26(2): 69–72 (in Chinese with English Abstract)

    Google Scholar 

  • Yao, Z. J., Chen, Z. Y., 1990. Geological Assessment of Geothermal Potential for Regional Development in Southeast Coast of China. Bulletin Institute of Hydrogeology and Engineering Geology, 6: 43–76 (in Chinese with English Abstract)

    Google Scholar 

  • Yi-Ben, T., 1986. Seismotectonics of Taiwan. Tectonophysics, 125(1/2/3): 17–37. https://doi.org/10.1016/0040-1951(86)90005-3

    Article  Google Scholar 

  • Yokoyama, T., Nakai, S., Wakita, H., 1999. Helium and Carbon Isotopic Compositions of Hot Spring Gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1/2): 99–107. https://doi.org/10.1016/s0377-0273(98)00108-5

    Article  Google Scholar 

  • Yu, Y. F., Hu, D., Wu, F. Z., 2015. Applications of the Screw Expander in Geothermal Power Generation in China. Proceedings World Geothermal Congress, April 19–25, 2015, Melbourne

    Google Scholar 

  • Zeng, M. X., Liu, D. L., Tian, G. H., et al., 2015. “Hot Spring Capital of China”—Status of the Development and Utilization of Geothermal Resources in Tianjin. Proceedings World Geothermal Congress, April 19–25, 2015, Melbourne

    Google Scholar 

  • Zhang, P., Wang, L. S., Liu, S. W., et al., 2007. Study on Geothermal Field in the South of the North China Basin. Progress in Geophysics, 22(2): 604–608 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, X. B., Guo, Q. H., Li, J. X., et al., 2015. Estimation of Reservoir Temperature Using Silica and Cationic Solutes Geothermometers: A Case Study in the Tengchong Geothermal Area. Chinese Journal of Geochemistry, 34(2): 233–240. https://doi.org/10.1007/s11631-015-0037-7

    Article  Google Scholar 

  • Zhang, X. M., Teng, J. W., Sun, R. M., et al., 2014. Structural Model of the Lithosphere-Asthenosphere System beneath the Qinghai-Tibet Plateau and Its Adjacent Areas. Tectonophysics, 634: 208–226. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Zhang, Z. G., 1988. An Assessment of Karst Geothermal Resources of the North China Basin. Carsologica Sinica, 7(4): 324–328 (in Chinese with English Abstract)

    Google Scholar 

  • Zhao, X. G., Wan, G., 2014. Current Situation and Prospect of Chinaʼs Geothermal Resources. Renewable and Sustainable Energy Reviews, 32: 651–661. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Zheng, B. B., Xu, J. P., Ni, T., et al., 2015. Geothermal Energy Utilization Trends from a Technological Paradigm Perspective. Renewable Energy, 77: 430–441. https://doi.org/10.1016/j.renene.2014.12.035

    Article  Google Scholar 

  • Zheng, K. Y., Chen, Z. H., 2016. The Prospect of Ground Source Heat Pump (GSHP) in China. The 8th China International Forum on Ground Source Heat Pump Industry. Aug. 11–12, 2016, Hangzhou (in Chinese)

    Google Scholar 

  • Zheng, K. Y., Dong, Y., Chen, Z. H., et al., 2015. Speeding up Industrialized Development of Geothermal Resources in China—Country Update Report 2010–2014. Proceedings World Geothermal Congress, April 19–25, 2015, Melbourne

    Google Scholar 

  • Zhu, B. Q., Yu, H., 1995. The Use of Geochemical Indicator Elements in the Exploration for Hot Water Sources within Geothermal Fields. Journal of Geochemical Exploration, 55(1/2/3): 125–136. https://doi.org/10.1016/0375-6742(95)00024-0

    Article  Google Scholar 

  • Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 93: 466–483. https://doi.org/10.1016/j.energy.2015.08.098

    Article  Google Scholar 

  • Zhuang, Y. Q., Guo, Q. H., Liu, M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science—Journal of China University of Geosciences, 41(9): 1499–1510. https://doi.org/10.3799/dqkx.2016.513 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Zimmermann, G., Blöcher, G., Reinicke, A., et al., 2011. Rock Specific Hydraulic Fracturing and Matrix Acidizing to Enhance a Geothermal System—Concepts and Field Results. Tectonophysics, 503(1/2): 146–154. https://doi.org/10.1016/j.tecto.2010.09.026

    Article  Google Scholar 

  • Zou, H. B., 1995. A Mafic-Ultramafic Rock Belt in the Fujian Coastal Area, Southeastern China: A Geochemical Study. Journal of Southeast Asian Earth Sciences, 12(1/2): 121–127. https://doi.org/10.1016/0743-9547(95)00014-3

    Article  Google Scholar 

Download references

Acknowledgments

We thank the financial support from the National Natural Science Foundation of China (No. 41672251), and constructive comments from the reviewers. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0838-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinhong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hu, Q. Development of Geothermal Resources in China: A Review. J. Earth Sci. 29, 452–467 (2018). https://doi.org/10.1007/s12583-018-0838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0838-9

Key words

Navigation