Advertisement

Journal of Earth Science

, Volume 29, Issue 2, pp 452–467 | Cite as

Development of Geothermal Resources in China: A Review

  • Xiaobo Zhang
  • Qinhong Hu
Geothermics

Abstract

Geothermal resources in China are distributed throughout the country, with hydrothermal systems of high temperature in the Tibet Autonomous Region, Yunnan Province and Taiwan Island and hydrothermal systems of low-medium temperature mainly in various sedimentary basins. Development and exploration of geothermal energy in China are below expectations. The purpose of this study is to comparatively review the characteristics (geology, hydrogeology, hydrochemistry and geophysical data) of typical hydrothermal fields/areas and suggest development and utilization approaches in the future. Hydrothermal systems formed by mountain lifting contain a considerable amount of energy for geothermal power generation, especially in the Tibet Autonomous Region, Yunnan Province and Taiwan Island. However, geothermal water in the Tatun geothermal field has high TDS (total dissolved solids), an issue that requires more research to resolve this problem for power generation. The large storage of geothermal resources has been investigated in Meso–Cenozoic sedimentary basins; it is basically used for heating, bathing or greenhouse plantation. Moreover, hydrothermal resources of low-medium temperature can also be used in binary power plants. Although the enhanced geothermal systems (EGS) in China are promising, the resources have not yet been commercially exploited, because the emerging technologies (hydraulic fracturing) and concerns over environmental impacts (induced micro-seismicity) lead to slow development. On the contrary, shallow geothermal energy has been directly utilized mainly for heating and cooling buildings. Cities like Beijing, Tianjin and Shenyang have established a series of ground-source heat-pump systems, which has led to a massive reduction of CO2 emission of 19.87×106 t.

Key words

geothermal energy potential exploitation and utilization China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the financial support from the National Natural Science Foundation of China (No. 41672251), and constructive comments from the reviewers. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0838-9.

References Cited

  1. An, K. S., Huang, S. Y., 1980. Geothermal Resources in China. Oil & Gas Science and Technology, 35: 449–460 (in Chinese with English Abstract)Google Scholar
  2. Ayub, M., Mitsos, A., Ghasemi, H., 2015. Thermo-Economic Analysis of a Hybrid Solar-Binary Geothermal Power Plant. Energy, 87: 326–335. https://doi.org/10.1016/j.energy.2015.04.106CrossRefGoogle Scholar
  3. Azzi, M., Duc, H., Ha, Q. P., 2015. Toward Sustainable Energy Usage in the Power Generation and Construction Sectors—A Case Study of Australia. Automation in Construction, 59: 122–127. https://doi.org/10.1016/j.autcon.2015.08.001CrossRefGoogle Scholar
  4. Bai, D. H., Meju, M. A., 2003. Deep Structure of the Longling-Ruili Fault underneath Ruili Basin near the Eastern Himalayan Syntaxis: Insights from Magnetotelluric Imaging. Tectonophysics, 364(3/4): 135–146. https://doi.org/10.1016/s0040-1951(03)00054-4CrossRefGoogle Scholar
  5. Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358–362. https://doi.org/10.1038/ngeo830CrossRefGoogle Scholar
  6. Bai, L., Li, G. H., Khan, N. G., et al., 2017. Focal Depths and Mechanisms of Shallow Earthquakes in the Himalayan-Tibetan Region. Gondwana Research, 41: 390–399. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  7. Barbier, E., 2002. Geothermal Energy Technology and Current Status: An Overview. Renewable and Sustainable Energy Reviews, 6(1/2): 3–65. https://doi.org/10.1016/s1364-0321(02)00002-3CrossRefGoogle Scholar
  8. Baria, R., Jung, R., Tishner, T., et al., 2006. Creation of an HDR Reservoir at 5 000 m Depth at the European HDR Project. Thirty-First Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford. 8Google Scholar
  9. Bilgili, M., Ozbek, A., Sahin, B., et al., 2015. An Overview of Renewable Electric Power Capacity and Progress in New Technologies in the World. Renewable and Sustainable Energy Reviews, 49: 323–334. https://doi.org/10.1016/j.rser.2015.04.148CrossRefGoogle Scholar
  10. Blum, P., Campillo, G., Münch, W., et al., 2010. CO2 Savings of Ground Source Heat Pump Systems—A Regional Analysis. Renewable Energy, 35(1): 122–127. https://doi.org/10.1016/j.renene.2009.03.034CrossRefGoogle Scholar
  11. Bonte, M., van Breukelen, B. M., Stuyfzand, P. J., 2013. Temperature-Induced Impacts on Groundwater Quality and Arsenic Mobility in Anoxic Aquifer Sediments Used for both Drinking Water and Shallow Geothermal Energy Production. Water Research, 47(14): 5088–5100. https://doi.org/10.1016/j.watres.2013.05.049CrossRefGoogle Scholar
  12. BP (British Petroleum), 2017. Geothermal Power. [2017-3-11] http://www.bp.com/en/globalGoogle Scholar
  13. Brown, D. W., Duchane, D. V., 1999. Scientific Progress on the Fenton Hill HDR Project since 1983. Geothermics, 28(4/5): 591–601. https://doi.org/10.1016/s0375-6505(99)00030-9CrossRefGoogle Scholar
  14. Chamorro, C. R., García-Cuesta, J. L., Mondéjar, M. E., et al., 2014. Enhanced Geothermal Systems in Europe: An Estimation and Comparison of the Technical and Sustainable Potentials. Energy, 65: 250–263. https://doi.org/10.1016/j.energy.2013.11.078CrossRefGoogle Scholar
  15. Chen, M. X., 1991. Distribution and Utilization of Geothermal Resources in China. Natural Resources, 5: 40–46 (in Chinese with English Abstract)Google Scholar
  16. Chen, M. X., Wang, J. Y., Deng, X., 1994. Geothermal Resources in China—Formation Characteristics and Potential Evaluation. Science Press, Beijing. 95–97 (in Chinese with English Abstract)Google Scholar
  17. Criss, R. E., 2015. Use of Geochemical and Geophysical Techniques to Characterize and Prospect for Geothermal Resources and Hydrothermal Ore Deposits. Journal of Earth Science, 26(1): 73–77. https://doi.org/10.1007/s12583-015-0510-6CrossRefGoogle Scholar
  18. Duo, J., 2011. Recommends on Exploitation of the High Temperature Geothermal Resources in Tibet. The 13th Annual Meeting of China Association for Science and Technology—Seminar on Development and Utilization of Geothermal Energy and Low Carbon Economy, Tianjin. 11–13 (in Chinese)Google Scholar
  19. Dor, J., Zhao, P., 2000. Characteristics and Genesis of the Yangbajing Geothermal Field, Tibet. Proceedings World Geothermal Congress, May 28–June 10, 2000, Kyushu-TohokuGoogle Scholar
  20. Evans, K. F., 2005. Permeability Creation and Damage Due to Massive Fluid Injections into Granite at 3.5 km at Soultz: 2. Critical Stress and Fracture Strength. Journal of Geophysical Research: Solid Earth, 110(B4): 387–405. https://doi.org/10.1029/2004jb003169Google Scholar
  21. Ferguson, G., Woodbury, A. D., 2006. Observed Thermal Pollution and Post-Development Simulations of Low-Temperature Geothermal Systems in Winnipeg, Canada. Hydrogeology Journal, 14(7): 1206–1215. https://doi.org/10.1007/s10040-006-0047-yCrossRefGoogle Scholar
  22. Guo, Q. H., 2012. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 27(10): 1887–1898. https://doi.org/10.1016/j.apgeochem.2012.07.006CrossRefGoogle Scholar
  23. Guo, Q. H., Liu, M. L., Li, J. X., et al., 2014. Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed via Magmatic Fluid Absorption or Geothermal Steam Heating?. Bulletin of Volcanology, 76(10): 1–12. https://doi.org/10.1007/s00445-014-0868-9CrossRefGoogle Scholar
  24. Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science—Journal of China University of Geosciences, 42(2): 286–297. https://doi.org/10.3799/dqkx.2017.021 (in Chinese with English Abstract)CrossRefGoogle Scholar
  25. Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215/216: 61–73. https://doi.org/10.1016/j.jvolgeores.2011.12.003CrossRefGoogle Scholar
  26. Guo, Q. H., Wang, Y. X., Liu, W., 2009. Hydrogeochemistry and Environmental Impact of Geothermal Waters from Yangyi of Tibet, China. Journal of Volcanology and Geothermal Research, 180(1): 9–20. https://doi.org/10.1016/j.jvolgeores.2008.11.034CrossRefGoogle Scholar
  27. Haehnlein, S., Bayer, P., Blum, P., 2010. International Legal Status of the Use of Shallow Geothermal Energy. Renewable and Sustainable Energy Reviews, 14(9): 2611–2625. https://doi.org/10.1016/j.rser.2010.07.069CrossRefGoogle Scholar
  28. Hähnlein, S., Bayer, P., Ferguson, G., et al., 2013. Sustainability and Policy for the Thermal Use of Shallow Geothermal Energy. Energy Policy, 59: 914–925. https://doi.org/10.1016/j.enpol.2013.04.040CrossRefGoogle Scholar
  29. Han, Z. S., 2008. Awareness to the Exploration and Evaluation of Shallow Geothermal Energy. Construction & Design for Project, 1: 14–16 (in Chinese with English Abstract)Google Scholar
  30. He, L. J., 2015. Thermal Regime of the North China Craton: Implications for Craton Destruction. Earth-Science Reviews, 140: 14–26. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  31. Hébert, R. L., Ledésert, B., Bartier, D., et al., 2010. The Enhanced Geothermal System of Soultz-Sous-Forêts: A Study of the Relationships between Fracture Zones and Calcite Content. Journal of Volcanology and Geothermal Research, 196(1/2): 126–133. https://doi.org/10.1016/j.jvolgeores.2010.07.001CrossRefGoogle Scholar
  32. Ho, C. S., 1986. A Synthesis of the Geologic Evolution of Taiwan. Tectonophysics, 125(1/2/3): 1–16. https://doi.org/10.1016/0040-1951(86)90004-1CrossRefGoogle Scholar
  33. Hochstein, M. P., Regenauer-Lieb, K., 1998. Heat Generation Associated with Collision of Two Plates: The Himalayan Geothermal Belt. Journal of Volcanology and Geothermal Research, 83(1/2): 75–92. https://doi.org/10.1016/s0377-0273(98)00018-3CrossRefGoogle Scholar
  34. Hua, Y. P., Oliphant, M., Hu, E. J., 2016. Development of Renewable Energy in Australia and China: A Comparison of Policies and Status. Renewable Energy, 85: 1044–1051. https://doi.org/10.1016/j.renene.2015.07.060CrossRefGoogle Scholar
  35. Huang, H. F., Goff, F., 1986. Hydrogeochemistry and Reservoir Model of Fuzhou Geothermal Field, China. Journal of Volcanology and Geothermal Research, 27(3/4): 203–227. https://doi.org/10.1016/0377-0273(86)90014-4CrossRefGoogle Scholar
  36. Huang, S. P., 2012. Geothermal Energy in China. Nature Climate Change, 2(8): 557–560. https://doi.org/10.1038/nclimate1598CrossRefGoogle Scholar
  37. Huang, S. B., Li, X., Liu, C. R., 2007. Study on Characteristics and Control Factors of Underground Hot Water in Area of Longling, Yunnan. Research of Soil and Water Conservation, 14(3): 147–149 (in Chinese with English Abstract)Google Scholar
  38. Kearey, P., Wei, H. B., 1993. Geothermal Fields of China. Journal of Volcanology and Geothermal Research, 56(4): 415–428. https://doi.org/10.1016/0377-0273(93)90006-dCrossRefGoogle Scholar
  39. Keçebaş, A., Gökgedik, H., 2015. Thermodynamic Evaluation of a Geothermal Power Plant for Advanced Exergy Analysis. Energy, 88: 746–755. https://doi.org/10.1016/j.energy.2015.05.094CrossRefGoogle Scholar
  40. Konstantinou, K. I., Lin, C. H., Liang, W. T., 2007. Seismicity Characteristics of a Potentially Active Quaternary Volcano: The Tatun Volcano Group, Northern Taiwan. Journal of Volcanology and Geothermal Research, 160(3/4): 300–318. https://doi.org/10.1016/j.jvolgeores.2006.09.009CrossRefGoogle Scholar
  41. Konstantinou, K. I., Lin, C. H., Liang, W. T., et al., 2009. Seismogenic Stress Field beneath the Tatun Volcano Group, Northern Taiwan. Journal of Volcanology and Geothermal Research, 187(3/4): 261–271. https://doi.org/10.1016/j.jvolgeores.2009.09.011CrossRefGoogle Scholar
  42. Li, J. X., Guo, Q. H., Wang, Y. X., 2015. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface: A Case Study in Rehai Geothermal Field, Tengchong. Earth Science—Journal of China University of Geosciences, 40(9): 1576–1584. https://doi.org/10.3799/dqkx.2015.142 (in Chinese with English Abstract)CrossRefGoogle Scholar
  43. Li, L. G., Li, B. X., 2017. A Discussion on the Heat Source Mechanism and Geothermal System of Gonghe-Guide Basin and Mountain Geothermal Field in Qinghai Province. Geophysical and Geochemical Exploration, 41(1): 29–34. https://doi.org/10.11720/wtyht.2017.1.05 (in Chinese with English Abstract)Google Scholar
  44. Liao, Z. J., 1982. Setting of the Geothermal Activities of Xizang (Tibet) and a Discussion of Associated Heat Source Problems. Acta Scientiarum Naturalium Universitatis Pekinensis, 24: 70–78 (in Chinese with English Abstract)Google Scholar
  45. Liao, Z. J., 2012. Deep-Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 26: 85–98. https://doi.org/10.3969/j.issn.1000-8527.2012.01.009 (in Chinese with English Abstract)Google Scholar
  46. Ling, W. J., Liu, Z. M., Wang, W. L., et al., 2013. Assessment of Geothermal Resources and Its Potential in China. Geology in China, 40: 312–321. https://doi.org/10.3969/j.issn.1000-3657.2013.01.021 (in Chinese with English Abstract)Google Scholar
  47. Ling, W. J., Wu, Q. H., Wang, G. L., 2012. Evaluation of Shallow Geothermal Energy Potential in China and Its Environmental Effects Analysis. Journal of Arid Land Resources and Environment, 26: 57–61 (in Chinese with English Abstract)Google Scholar
  48. Liu, C. C., Maity, J. P., Jean, J. S., et al., 2012. Geochemical Characteristics of the Mud Volcano Fluids in Southwestern Taiwan and Their Possible Linkage to Elevated Arsenic Concentration in Chianan Plain Groundwater. Environmental Earth Sciences, 66(5): 1513–1523. https://doi.org/10.1007/s12665-011-1391-3CrossRefGoogle Scholar
  49. Liu, S. M., 1992. Geothermal Resources in Taiwan. Geology in China, 5: 25–28 (in Chinese with English Abstract)Google Scholar
  50. Liu, Y. T., 2009. A Study of Hydrochemistry and Geyser of Thermal Ground Water in the Banglazhang Geothermal Field in Longling, Yunnan: [Dissertation]. China University of Geosciences, Beijing. 34–40 (in Chinese with English Abstract)Google Scholar
  51. Lu, G. P., Liu, R. F., 2015. Aqueous Chemistry of Typical Geothermal Springs with Deep Faults in Xinyi and Fengshun in Guangdong Province, China. Journal of Earth Science, 26(1): 60–72. https://doi.org/10.1007/s12583-015-0498-yCrossRefGoogle Scholar
  52. Lu, H. Y., 2014. Application of Water Chemistry as a Hydrological Tracer in a Volcano Catchment Area: A Case Study of the Tatun Volcano Group, North Taiwan. Journal of Hydrology, 511: 825–837. https://doi.org/10.1016/j.jhydrol.2014.02.036CrossRefGoogle Scholar
  53. Lund, J. W., Freeston, D. H., Boyd, T. L., 2011. Direct Utilization of Geothermal Energy 2010 Worldwide Review. Geothermics, 40(3): 159–180. https://doi.org/10.1016/j.geothermics.2011.07.004CrossRefGoogle Scholar
  54. Ma, F. R., Lin, L., Wang, Y. P., et al., 2006. Discussion on the Sustainable Exploitation and Utilization of Geothermal Resources in Tianjin. Geological Survey and Research, 29(3): 222–228 (in Chinese with English Abstract)Google Scholar
  55. Ma, J. T., Bao, X. H., Cao, J. F., et al., 2013. Analysis on Utilization Conditions of Shallow Geothermal Energy in Changchun. Geoscience, 27: 460–467 (in Chinese with English Abstract)Google Scholar
  56. Majer, E. L., Baria, R., Stark, M., et al., 2007. Induced Seismicity Associated with Enhanced Geothermal Systems. Geothermics, 36(3): 185–222. https://doi.org/10.1016/j.geothermics.2007.03.003CrossRefGoogle Scholar
  57. Majer, E. L., Peterson, J. E., 2007. The Impact of Injection on Seismicity at the Geysers, California Geothermal Field. International Journal of Rock Mechanics and Mining Sciences, 44(8): 1079–1090. https://doi.org/10.1016/j.ijrmms.2007.07.023CrossRefGoogle Scholar
  58. McClure, M. W., Horne, R. N., 2014. An Investigation of Stimulation Mechanisms in Enhanced Geothermal Systems. International Journal of Rock Mechanics and Mining Sciences, 72: 242–260. https://doi.org/10.1016/j.ijrmms.2014.07.011CrossRefGoogle Scholar
  59. Michaelides, E. E., 2016. Future Directions and Cycles for Electricity Production from Geothermal Resources. Energy Conversion and Management, 107: 3–9. https://doi.org/10.1016/j.enconman.2015.07.057CrossRefGoogle Scholar
  60. Mignan, A., Landtwing, D., Kästli, P., et al., 2015. Induced Seismicity Risk Analysis of the 2006 Basel, Switzerland, Enhanced Geothermal System Project: Influence of Uncertainties on Risk Mitigation. Geothermics, 53: 133–146. https://doi.org/10.1016/j.geothermics.2014.05.007CrossRefGoogle Scholar
  61. Molnar, P., Lyon-Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123–154. https://doi.org/10.1111/j.1365-246x.1989.tb02020.xCrossRefGoogle Scholar
  62. Noblet, C. L., Teisl, M. F., Evans, K., et al., 2015. Public Preferences for Investments in Renewable Energy Production and Energy Efficiency. Energy Policy, 87: 177–186. https://doi.org/10.1016/j.enpol.2015.09.003CrossRefGoogle Scholar
  63. Purnomo, B. J., Pichler, T., 2014. Geothermal Systems on the Island of Java, Indonesia. Journal of Volcanology and Geothermal Research, 285: 47–59. https://doi.org/10.13039/100004807CrossRefGoogle Scholar
  64. Quenette, S., Xi, Y. F., Mansour, J., et al., 2015. Underworld-GT Applied to Guangdong, a Tool to Explore the Geothermal Potential of the Crust. Journal of Earth Science, 26(1): 78–88. https://doi.org/10.1007/s12583-015-0517-zCrossRefGoogle Scholar
  65. Qiang, M. R., Chen, F. H., Song, L., et al., 2013. Late Quaternary Aeolian Activity in Gonghe Basin, Northeastern Qinghai-Tibetan Plateau, China. Quaternary Research, 79(3): 403–412. https://doi.org/10.1016/j.yqres.2013.03.003CrossRefGoogle Scholar
  66. Qiu, N. S., Zuo, Y. H., Chang, J., et al., 2014. Geothermal Evidence of Meso–Cenozoic Lithosphere Thinning in the Jiyang Sub-Basin, Bohai Bay Basin, Eastern North China Craton. Gondwana Research, 26(3/4): 1079–1092. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  67. Regenauer-Lieb, K., Yuen, D. A., Qi, S. H., et al., 2015. Foreword: Toward a Quantitative Understanding of the Frontier in Geothermal Energy. Journal of Earth Science, 26(1): 1–1. https://doi.org/10.1007/s12583-015-0601-4CrossRefGoogle Scholar
  68. Rosiek, S., Batlles, F. J., 2012. Shallow Geothermal Energy Applied to a Solar-Assisted Air-Conditioning System in Southern Spain: Two-Year Experience. Applied Energy, 100: 267–276. https://doi.org/10.1016/j.apenergy.2012.05.041CrossRefGoogle Scholar
  69. Rybach, L., Eugster, W. J., 2010. Sustainability Aspects of Geothermal Heat Pump Operation, with Experience from Switzerland. Geothermics, 39(4): 365–369. https://doi.org/10.1016/j.geothermics.2010.08.002CrossRefGoogle Scholar
  70. Safari, R., Ghassemi, A., 2015. 3D Thermo-Poroelastic Analysis of Fracture Network Deformation and Induced Micro-Seismicity in Enhanced Geothermal Systems. Geothermics, 58: 1–14. https://doi.org/10.1016/j.geothermics.2015.06.010CrossRefGoogle Scholar
  71. Tan, H. B., Zhang, W. J., Chen, J. S., et al., 2012. Isotope and Geochemical Study for Geothermal Assessment of the Xining Basin of the Northeastern Tibetan Plateau. Geothermics, 42: 47–55. https://doi.org/10.1016/j.geothermics.2012.01.001CrossRefGoogle Scholar
  72. Tao, Q. F., 2015. A New Round of Survey and Assessment of Geothermal Resources in China. Proceedings World Geothermal Congress, April 19–25, 2015, MelbourneGoogle Scholar
  73. Tian, G. H., Wang, B., Liu, D. L., 2015. Development Dynamic, Existing Problems and Countermeasures of Geothermal Resources in Tianjin, China. Proceedings World Geothermal Congress, April 19–25, 2015, MelbourneGoogle Scholar
  74. Wang, G., Li, K., Wen, D., et al., 2013. Assessment of Geothermal Resources in China. Proceedings, 38 Workshop on Geothermal Reservoir Engineering, Stanford University, Febuary 11–13, 2013, StanfordGoogle Scholar
  75. Wang, G. L., Ling, W. J., Han, Y.Y., et al., 2007. The Shallow Geothermal Energy Research Situation and Works which have to be Done. Construction and Design for Project, 11: 1–4 (in Chinese with English Abstract)Google Scholar
  76. Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science and Technology Review, 30: 25–31. https://doi.org/10.3981/j.issn.1000-7857.2012.322.003Google Scholar
  77. Wang, J. Y., Huang, S. P., 1990. Summary of Heat Flow Data from the Continental Area of China. Seismology and Geology, 12: 351–366 (in Chinese)Google Scholar
  78. Wang, S., 2013. Geothermal Resources Characteristics and Exploitation Suggestion for the Xinzhou Geothermal Field in Yangjiang City, Guangdong. Ground Water, 35(1): 42–44Google Scholar
  79. Wei, W. S., Li, N. B., Yang, J. W., et al., 2009. The Problems on Exploitation and Utilization of Shallow Geothermal Energy. Geothermal Energy, 3: 17–19 (in Chinese with English Abstract)Google Scholar
  80. Xing, H. L., Liu, Y., Gao, J. F., et al., 2015. Recent Development in Numerical Simulation of Enhanced Geothermal Reservoirs. Journal of Earth Science, 26(1): 28–36. https://doi.org/10.1007/s12583-015-0506-2CrossRefGoogle Scholar
  81. Xiong, S. B., Jin, D. M., Sun, K. Z., et al., 1991. Some Characteristics of Deep Structure of the Zhangzhou Geothermal Field and Itʼs Neighborhood in the Fujian Province. Acta Geophysica Sinica, 34: 55–63 (in Chinese)Google Scholar
  82. Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(2): 224–233. https://doi.org/10.1002/cjg2.1604CrossRefGoogle Scholar
  83. Xue, J. Q., Gan, B., Li, B. X., et al., 2013. Geological-Geophysical Characteristics of Enhanced Geothermal Systems (Hot Dry Rocks) in Gonghe-Guide Basin. Geophysical and Geochemical Exploration, 37: 35–41 (in Chinese with English Abstract)Google Scholar
  84. Xue, N., Chen, Z. J., 2003. A Summary Study on Distribution and Utilization of Geothermal Resources in Fujian Province. Fujian Energy Exploitation and Saving, 2: 15–18 (in Chinese with English Abstract)Google Scholar
  85. Yang, H. L., Zheng, K. B., Zheng, K. Y., et al., 2010. Large-Scale Development and Utilization of Shallow Geothermal Energy in China. Geothermal Energy in China: Achievements and Prospects. The 40th Anniversary on Li Siguang Promoting Geothermal Energy Exploitation and Utilization in China and Seminar on Geothermal Development in China, October 15–18, 2010, Beijing. 97–115Google Scholar
  86. Yang, R. H., Zou, S. H., Liu, C. X., 2011. Preliminary Discussion on the Development and Utilization of Shallow Geothermal Energy. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 26(2): 69–72 (in Chinese with English Abstract)Google Scholar
  87. Yao, Z. J., Chen, Z. Y., 1990. Geological Assessment of Geothermal Potential for Regional Development in Southeast Coast of China. Bulletin Institute of Hydrogeology and Engineering Geology, 6: 43–76 (in Chinese with English Abstract)Google Scholar
  88. Yi-Ben, T., 1986. Seismotectonics of Taiwan. Tectonophysics, 125(1/2/3): 17–37. https://doi.org/10.1016/0040-1951(86)90005-3CrossRefGoogle Scholar
  89. Yokoyama, T., Nakai, S., Wakita, H., 1999. Helium and Carbon Isotopic Compositions of Hot Spring Gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1/2): 99–107. https://doi.org/10.1016/s0377-0273(98)00108-5CrossRefGoogle Scholar
  90. Yu, Y. F., Hu, D., Wu, F. Z., 2015. Applications of the Screw Expander in Geothermal Power Generation in China. Proceedings World Geothermal Congress, April 19–25, 2015, MelbourneGoogle Scholar
  91. Zeng, M. X., Liu, D. L., Tian, G. H., et al., 2015. “Hot Spring Capital of China”—Status of the Development and Utilization of Geothermal Resources in Tianjin. Proceedings World Geothermal Congress, April 19–25, 2015, MelbourneGoogle Scholar
  92. Zhang, P., Wang, L. S., Liu, S. W., et al., 2007. Study on Geothermal Field in the South of the North China Basin. Progress in Geophysics, 22(2): 604–608 (in Chinese with English Abstract)Google Scholar
  93. Zhang, X. B., Guo, Q. H., Li, J. X., et al., 2015. Estimation of Reservoir Temperature Using Silica and Cationic Solutes Geothermometers: A Case Study in the Tengchong Geothermal Area. Chinese Journal of Geochemistry, 34(2): 233–240. https://doi.org/10.1007/s11631-015-0037-7CrossRefGoogle Scholar
  94. Zhang, X. M., Teng, J. W., Sun, R. M., et al., 2014. Structural Model of the Lithosphere-Asthenosphere System beneath the Qinghai-Tibet Plateau and Its Adjacent Areas. Tectonophysics, 634: 208–226. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  95. Zhang, Z. G., 1988. An Assessment of Karst Geothermal Resources of the North China Basin. Carsologica Sinica, 7(4): 324–328 (in Chinese with English Abstract)Google Scholar
  96. Zhao, X. G., Wan, G., 2014. Current Situation and Prospect of Chinaʼs Geothermal Resources. Renewable and Sustainable Energy Reviews, 32: 651–661. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  97. Zheng, B. B., Xu, J. P., Ni, T., et al., 2015. Geothermal Energy Utilization Trends from a Technological Paradigm Perspective. Renewable Energy, 77: 430–441. https://doi.org/10.1016/j.renene.2014.12.035CrossRefGoogle Scholar
  98. Zheng, K. Y., Chen, Z. H., 2016. The Prospect of Ground Source Heat Pump (GSHP) in China. The 8th China International Forum on Ground Source Heat Pump Industry. Aug. 11–12, 2016, Hangzhou (in Chinese)Google Scholar
  99. Zheng, K. Y., Dong, Y., Chen, Z. H., et al., 2015. Speeding up Industrialized Development of Geothermal Resources in China—Country Update Report 2010–2014. Proceedings World Geothermal Congress, April 19–25, 2015, MelbourneGoogle Scholar
  100. Zhu, B. Q., Yu, H., 1995. The Use of Geochemical Indicator Elements in the Exploration for Hot Water Sources within Geothermal Fields. Journal of Geochemical Exploration, 55(1/2/3): 125–136. https://doi.org/10.1016/0375-6742(95)00024-0CrossRefGoogle Scholar
  101. Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 93: 466–483. https://doi.org/10.1016/j.energy.2015.08.098CrossRefGoogle Scholar
  102. Zhuang, Y. Q., Guo, Q. H., Liu, M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science—Journal of China University of Geosciences, 41(9): 1499–1510. https://doi.org/10.3799/dqkx.2016.513 (in Chinese with English Abstract)CrossRefGoogle Scholar
  103. Zimmermann, G., Blöcher, G., Reinicke, A., et al., 2011. Rock Specific Hydraulic Fracturing and Matrix Acidizing to Enhance a Geothermal System—Concepts and Field Results. Tectonophysics, 503(1/2): 146–154. https://doi.org/10.1016/j.tecto.2010.09.026CrossRefGoogle Scholar
  104. Zou, H. B., 1995. A Mafic-Ultramafic Rock Belt in the Fujian Coastal Area, Southeastern China: A Geochemical Study. Journal of Southeast Asian Earth Sciences, 12(1/2): 121–127. https://doi.org/10.1016/0743-9547(95)00014-3CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental Studies, State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina
  2. 2.Department of Earth and Environmental SciencesUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations