Abstract
The end-Triassic (also Triassic-Jurassic) mass extinction severely affected life on planet Earth 200 million years ago. Paleoclimate change triggered by the volcanic eruptions of the Central Atlantic Magmatic Province (CAMP) caused a great loss of marine biodiversity, among which 96% coral genera were get lost. However, there is precious little detail on the paleoecology and growth forms lost between the latest Triassic extinction and the Early Jurassic recovery. Here a new pilot study was conducted by analyzing corallite integration levels among corals from the latest Triassic and Early Jurassic times. Integration levels in corals from the Late Triassic and Early Jurassic were determined through both the Paleobiology Database as well as from a comprehensive museum collection of fossil corals. Results suggest that in addition to a major loss of diversity following the end-Triassic mass extinction, there also was a significant loss of highly integrated corals as clearly evidenced by the coral data from the Early Jurassic. This confirms our hypothesis of paleoecological selectivity for corals following the end-Triassic mass extinction. This study highlights the importance of assigning simple to advanced paleoecological characters with integration levels, which opens a useful approach to understanding of mass extinction and the dynamics of the recovery.
This is a preview of subscription content, access via your institution.
References Cited
Barbeitos, M. S., Romano, S. L., Lasker, H. R., 2010. Repeated Loss of Coloniality and Symbiosis in Scleractinian Corals. Proceedings of the National Academy of Sciences, USA, 107(26): 11877–11882. https://doi.org/10.1073/pnas.0914380107
Bertrand, H., 2006. Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic Rifting Processes and the Triassic–Jurassic Biotic Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 326–344. https://doi.org/10.1016/j.palaeo.2006.06.034
Burke, L., Reytar, K., Spalding, M., et al., 2011. Reefs at Risk Revisited. World Resources Institute, Washington, DC. 1–130.
Cairns, S. D., 2010. Review of Octocorallia (Cnidaria: Anthozoa) from Hawai’I and Adjacent Seamounts. Part 3: Genera Thouarella, Plumarella, Callogorgia, Fanellia, and Parastenella. Pacific Science, 64: 431–440. https://doi.org/10.2984/64.3.413
Caruthers, A. H., Stanley, G. D. Jr., 2008. Systematic Analysis of Upper Triassic Silicified Scleractinian Corals from Wrangellia and the Alexander Terrane, Alaska and British Columbia. Journal of Paleontology, 82(3): 470–491. https://doi.org/10.1666/06-115.1
Coates, A. G., Jackson, J. B. C., 1987. Clonal Growth, Algal Symbiosis, and Reef Formation by Corals. Paleobiology, 13(4): 363–378. https://doi.org/10.1017/s0094837300008988
Coates, A. G., Oliver, W. A. Jr., 1973. Coloniality in Zoantharian Corals. In: Boardman, R. S., Cheetham, A. H., Oliver, W. A. Jr., eds., Animal Colonies: Development and Function through Time. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania. 3–27
Cohen, A. S., Coe, A. L., 2002. New Geochemical Evidence for the Onset of Volcanism in the Central Atlantic Magmatic Province and Environmental Change at the Triassic–Jurassic Boundary. Geology, 30(3): 267. https://doi.org/10.1130/0091-7613(2002)030<0267:ngefto>2.0.co;2
Damborenea, S. E., Echevarría, J., Ros–Franch, S., 2017. Biotic Recovery after the End–Triassic Extinction Event: Evidence from Marine Bivalves of the Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 487: 93–104. https://doi.org/10.1016/j.palaeo.2017.08.025
Duncan, P. M., 1884. A Monograph of the British Fossil Corals. Cambridge University Press, Cambridge. 1–66
Echevarría, J., Hodges, M. S., Damborenea, S. E., et al., 2017. Recovery of Scleractinian Morphologic Diversity during the Early Jurassic in Mendoza Province, Argentina. Ameghiniana, 54(1): 70–82. https://doi.org/10.5710/amgh.11.09.2016.2997
Faure, G., Pichon, M., Benzoni, F., et al., 2007. Knowledge Base of the Mascarene’s Corals, Vol. 2. [2018/01/24] http://lis-upmc.snv.jussieu.fr/xper2/basesHtml/coraux_Mascareignes_en/web/descriptors/Relationshi p_between_corallites_.html
Flügel, E., 2002, Triassic Reef Patterns. In: Kiessling, W., Flügel, E., Golonka, J., eds., Phanerozoic Reef Patterns, v. 72. SEPM, Tulsa. 391–463
Frankowiak, K., Wang, X. T., Sigman, D. M., et al., 2016. Photosymbiosis and the Expansion of Shallow–Water Corals. Science Advances, 2(11): e1601122. https://doi.org/10.1126/sciadv.1601122
Frech, F., 1890. Die Korallen der Trias.–I. Die Korallen der Juvavischen Triasprovinz. Paleontogarphica, 37: 1–116
González–León, C., Stanley, G. D. Jr., Lawton, T. F., et al., 2017. The Triassic/ Jurassic Boundary and the Jurassic Stratigraphy and Biostratigraphy of Northern Sonora, Northwest Mexico. Boletín de la Sociedad Geológica Mexicana, 69(3): 711–738. https://doi.org/10.18268/bsgm2017v69n3a11
Greene, S. E., Martindale, R. C., Ritterbush, K. A., et al., 2012. Recognising Ocean Acidification in Deep Time: An Evaluation of the Evidence for Acidification across the Triassic–Jurassic Boundary. Earth–Science Reviews, 113: 72–93. https://doi.org/10.1016/j.earscirev.2012.03.009
Gretz, M., Lathuilière, B., Martini, R., et al., 2013. The Hettangian Corals of the Isle of Skye (Scotland): An Opportunity to Better Understand the Palaeoenvironmental Conditions during the Aftermath of the Triassic–Jurassic Boundary Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 376: 132–148.https://doi.org/10.1016/j.palaeo.2013.02.029
Hautmann, M., 2012. Extinction: End–Triassic Mass Extinction. John Wiley & Sons, Ltd, Chichester. https://doi.org/10.1002/9780470015902.a0001655.pub3
Hautmann, M., Benton, M. J., Tomašových, A., 2008. Catastrophic Ocean Acidification at the Triassic–Jurassic Boundary. Neues Jahrbuch für Geologie und Paläontologie–Abhandlungen, 249(1): 119–127. https://doi.org/10.1127/0077-7749/2008/0249-0119
Hodges, M. S., Stanley, G. D. Jr., 2015. North American Coral Recovery after the End–Triassic Mass Extinction, New York Canyon, Nevada, USA. GSA Today, 15(10): 4–9. https://doi.org/10.1130/gsatg249a.1
Kiessling, W., Simpson, C., 2011. On the Potential for Ocean Acidification to be a General Cause of Ancient Reef Crises. Global Change Biology, 17(1): 56–67. https://doi.org/10.1111/j.1365-2486.2010.02204.x
Kiessling, W., Aberhan, M., Brenneis, B., et al., 2007. Extinction Trajectories of Benthic Organisms across the Triassic–Jurassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1/2/3/4): 201–222. https://doi.org/10.1016/j.palaeo.2006.06.029
Kiessling, W., Roniewicz, E., Villier, L., et al., 2009. An Early Hettangian Coral Reef in Southern France: Implications for the End–Triassic Reef Crisis. Palaios, 24(10): 657–671. https://doi.org/10.2110/palo.2009.p09-030r
Lathuilière, B., Marchal, D., 2009. Extinction, Survival and Recovery of Corals from the Triassic to Middle Jurassic Time. Terra Nova, 21(1): 57–66. https://doi.org/10.1111/j.1365-3121.2008.00856.x
Lindström, S., van de Schootbrugge, B., Hansen, K. H., et al., 2017. A New Correlation of Triassic–Jurassic Boundary Successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A Time–Line for the End–Triassic Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 80–102. https://doi.org/10.13039/100011044
Lipps, J. H., Stanley, G. D. Jr., 2016. Photosymbiosis in the Past and Present Reefs. In: Hubbard, D. K., ed., Coral Reefs at the Crossroads. Coral Reefs of the World 6. Springer Science Publishers, Dordrecht. 47–68. doi 10.1007/978–94–017–7567–0_3
Lucas, S. G., Tanner, L. H., 2008. Reexamination of the End–Triassic Mass Extinction. In: Elewa, A. M. T., ed., Mass Extinction. Springer Verlag, New York. 66–103
Martindale, R. C., Berelson, W. M., Corsetti, F. A., et al., 2012. Constraining Carbonate Chemistry at a Potential Ocean Acidification Event (the Triassic–Jurassic Boundary) Using the Presence of Corals and Coral Reefs in the Fossil Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352: 114–123. https://doi.org/10.1016/j.palaeo.2012.06.020
Marzoli, A., Renne, P. R., Piccirillo, E. M., et al., 1999. Extensive 200–Million–Year–Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science, 284(5414): 616–618. https://doi.org/10.1126/science.284.5414.616
Melnikova, G. K., 2001. Chapter on Corals. In: Rozanov, A. Y., Shevyrev, A. A., eds., Atlas of Triassic Invertebrates of the Pamirs. Nauka, Moscow. 30–80
Melnikova, G. K., Roniewicz, E., 2012. Early Jurassic Corals of the Pamir Mountains—A New Triassic–Jurassic Transitional Fauna. Geologica Belgica, 15: 376–381. https://popups.uliege.be:443/1374-8505/index.php?id=3859
Melnikova, G. K., Roniewicz, E., 2017. Early Jurassic Corals with Dominating Solitary Growth Forms from the Kasamurg Mountains, Central Asia. Palaeoworld, 26(1): 124–148. https://doi.org/10.1016/j.palwor.2016.01.001
Negus, P. E., 1983. Distribution of the British Jurassic Corals. Proceedings of the Geologists’ Association, 94(3): 251–257. https://doi.org/10.1016/s0016-7878(83)80043-1
Negus, P. E., 1991. Stratigraphical Table of Scleractinian Coral Genera and Species Occurring in the British Jurassic. Proceedings of the Geologists’ Association, 102(4): 251–259. https://doi.org/10.1016/s0016-7878(08)80084-3
Nomade, S., Knight, K. B., Beutel, E., et al., 2007. Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic Rifting Processes and the Triassic–Jurassic Biotic Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1/2/3/4): 326–344. https://doi.org/10.1016/j.palaeo.2006.06.034
Riedel, P., 1991. Korallen in der Trias der Tethys: Stratigraphische Reichweiten, Diversitätsmuster, Entwicklungstren. Mitt. Ges. Geol. Berbaustud Österreich, 37: 97–118
Roniewicz, E., 1989. Triassic Scleractinian Corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Österreichische Akademie der Wissenschaften Mathematisch–Naturwissenschaftliche Klasse Denkschriften, 126: 1–152
Roniewicz, E., 1996. Upper Triassic Solitary Corals from the Gosaukamm and other North Alpine Regions.Österreichische Akademie der Wissenschaften Sitzungsberichte Mathematisch–Naturwissenschaftliche Klasse Abt. I, 202: 3–41
Roniewicz, E., Morycowa, E., 1989. Triassic Scleractinia and the Triassic/ Liassic Boundary. Memoirs of the Association of Australasian Palaeontologists, 8: 347–354
Smith, J. P., 1927. Upper Triassic Marine Invertebrate Faunas of North America. U.S. Geological Survey Professional Paper, 141: 1–262
Squires, D. F., 1956. A New Triassic Coral Fauna from Idaho. American Museum Novitiates, 1797: 1–121
Stanley, G. D. Jr., 2006. Ecology: Photosymbiosis and the Evolution of Modern Coral Reefs. Science, 312(5775): 857–858. https://doi.org/10.1126/science.1123701
Stanley, G. D. Jr., Beauvais, L., 1994. Corals from an Early Jurassic Coral Reef in British Columbia: Refuge on an Oceanic Island Reef. Lethaia, 27(1): 35–47. https://doi.org/10.1111/j.1502-3931.1994.tb01553.x
Stanley, G. D. Jr., Cairns, S. D., 1988. Constructional Azooxanthellate Coral Communities: An Overview with Implications for the Fossil Record. Palaios, 3(2): 233. https://doi.org/10.2307/3514534
Stanley, G. D. Jr., Lipps, J. H., 2011. Photosymbiosis: The Driving Force for Reef Success and Failure. Paleontological Society Paper, 17: 33–60. https://doi.org/10.1017/S1089332600002436
Stanley, G. D. Jr., McRoberts, C. A., 1993. A Coral Reef in the Telkwa Range, British Columbia: The Earliest Jurassic Example. Canadian Journal of Earth Sciences, 30(4): 819–831. https://doi.org/10.1139/e93-068
Stanley, G. D. Jr., Swart, P. K., 1995. Evolution of the Coral–Zooxanthellae Symbiosis during the Triassic: A Geochemical Approach. Paleobiology, 21(2): 179–199. https://doi.org/10.1017/s0094837300013191
Stanley, G. D. Jr., van de Schootbrugge, B., 2018. The Evolution of the Coral––Algal Symbiosis and Coral Bleaching in the Geologic Past. In: van Oppen, M. J. H., Lough, J. M., eds., Coral Bleaching: Patterns, Processes, Causes and Consequences (2 ed.): Ecological Studies, 233. Springer, Berlin. 7–19
Stolarski, J., Russo, A., 2002. Microstructural Diversity of the Stylophyllid [Scleractinia] Skeleton. Acta Palaeontologica Polonica, 47: 651–666
Swain, T., Bold, E. C., Osborn, P. C., et al., 2018. Physiological Integration of Coral Colonies is Correlated with Bleaching Resistance. Marine Ecology Progress Series, 586: 1–10. https://doi.org/10.3354/meps12445
Talent, J. A., 1988. Organic Reef–Building: Episodes of Extinction and Symbiosis? Senckenbergiana Lethaea, 69: 315–368
Tanner, L. H., Lucas, S. G., Chapman, M. G., 2004. Assessing the Record and Causes of Late Triassic Extinctions. Earth–Science Reviews, 65(1/2): 103–139. https://doi.org/10.1016/s0012-8252(03)00082-5
Tornabene, C., Martindale, R. C., Wang, X. T., et al., 2017. Detecting Photosymbiosis in Fossil Scleractinian Corals. Scientific Reports, 7: e9465, https://doi.org/10.1038/s41598-017-09008-4
van de Schootbrugge, B., Tremolada, F., Rosenthal, Y., et al., 2007. End–Triassic Calcification Crisis and Blooms of Organic–Walled ‘Disaster Species’. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1/2/3/4): 126–141. https://doi.org/10.1016/j.palaeo.2006.06.026
Wells, J. W., 1956. Scleractinia. In: Moore, R. C., ed., Treatise on Invertebrate Paleontology, Volume F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, KS. 353–367
Wood, R., 1999. Reef Evolution. Oxford University Press, Oxford. 1–414
Acknowledgments
We wish to acknowledge Dr. Ewa Roniewicz who supplied valuable information on the corals. We also wish to acknowledge Mrs. Kallie Moore, collections manager at the University of Montana Paleontology Center, and Dr. Montana S. Hodges for their help with specimens and information on those specimens. Lastly, one of us (Robinson) wishes to acknowledge Mr. Rob Jensen of Hellgate High School, Missoula, for providing a platform where high school students can be given an opportunity to conduct scientific research. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0793-5..
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stanley, G.D., Shepherd, H.M.E. & Robinson, A.J. Paleoecological Response of Corals to the End-Triassic Mass Extinction: An Integrational Analysis. J. Earth Sci. 29, 879–885 (2018). https://doi.org/10.1007/s12583-018-0793-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12583-018-0793-5
Key words
- coral loss
- integration level
- end-Triassic mass extinction
- paleoecology