Paleoecological Response of Corals to the End-Triassic Mass Extinction: An Integrational Analysis

Abstract

The end-Triassic (also Triassic-Jurassic) mass extinction severely affected life on planet Earth 200 million years ago. Paleoclimate change triggered by the volcanic eruptions of the Central Atlantic Magmatic Province (CAMP) caused a great loss of marine biodiversity, among which 96% coral genera were get lost. However, there is precious little detail on the paleoecology and growth forms lost between the latest Triassic extinction and the Early Jurassic recovery. Here a new pilot study was conducted by analyzing corallite integration levels among corals from the latest Triassic and Early Jurassic times. Integration levels in corals from the Late Triassic and Early Jurassic were determined through both the Paleobiology Database as well as from a comprehensive museum collection of fossil corals. Results suggest that in addition to a major loss of diversity following the end-Triassic mass extinction, there also was a significant loss of highly integrated corals as clearly evidenced by the coral data from the Early Jurassic. This confirms our hypothesis of paleoecological selectivity for corals following the end-Triassic mass extinction. This study highlights the importance of assigning simple to advanced paleoecological characters with integration levels, which opens a useful approach to understanding of mass extinction and the dynamics of the recovery.

This is a preview of subscription content, access via your institution.

References Cited

  1. Barbeitos, M. S., Romano, S. L., Lasker, H. R., 2010. Repeated Loss of Coloniality and Symbiosis in Scleractinian Corals. Proceedings of the National Academy of Sciences, USA, 107(26): 11877–11882. https://doi.org/10.1073/pnas.0914380107

    Article  Google Scholar 

  2. Bertrand, H., 2006. Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic Rifting Processes and the Triassic–Jurassic Biotic Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 326–344. https://doi.org/10.1016/j.palaeo.2006.06.034

    Google Scholar 

  3. Burke, L., Reytar, K., Spalding, M., et al., 2011. Reefs at Risk Revisited. World Resources Institute, Washington, DC. 1–130.

    Google Scholar 

  4. Cairns, S. D., 2010. Review of Octocorallia (Cnidaria: Anthozoa) from Hawai’I and Adjacent Seamounts. Part 3: Genera Thouarella, Plumarella, Callogorgia, Fanellia, and Parastenella. Pacific Science, 64: 431–440. https://doi.org/10.2984/64.3.413

    Google Scholar 

  5. Caruthers, A. H., Stanley, G. D. Jr., 2008. Systematic Analysis of Upper Triassic Silicified Scleractinian Corals from Wrangellia and the Alexander Terrane, Alaska and British Columbia. Journal of Paleontology, 82(3): 470–491. https://doi.org/10.1666/06-115.1

    Article  Google Scholar 

  6. Coates, A. G., Jackson, J. B. C., 1987. Clonal Growth, Algal Symbiosis, and Reef Formation by Corals. Paleobiology, 13(4): 363–378. https://doi.org/10.1017/s0094837300008988

    Article  Google Scholar 

  7. Coates, A. G., Oliver, W. A. Jr., 1973. Coloniality in Zoantharian Corals. In: Boardman, R. S., Cheetham, A. H., Oliver, W. A. Jr., eds., Animal Colonies: Development and Function through Time. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania. 3–27

    Google Scholar 

  8. Cohen, A. S., Coe, A. L., 2002. New Geochemical Evidence for the Onset of Volcanism in the Central Atlantic Magmatic Province and Environmental Change at the Triassic–Jurassic Boundary. Geology, 30(3): 267. https://doi.org/10.1130/0091-7613(2002)030<0267:ngefto>2.0.co;2

    Article  Google Scholar 

  9. Damborenea, S. E., Echevarría, J., Ros–Franch, S., 2017. Biotic Recovery after the End–Triassic Extinction Event: Evidence from Marine Bivalves of the Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 487: 93–104. https://doi.org/10.1016/j.palaeo.2017.08.025

    Article  Google Scholar 

  10. Duncan, P. M., 1884. A Monograph of the British Fossil Corals. Cambridge University Press, Cambridge. 1–66

    Google Scholar 

  11. Echevarría, J., Hodges, M. S., Damborenea, S. E., et al., 2017. Recovery of Scleractinian Morphologic Diversity during the Early Jurassic in Mendoza Province, Argentina. Ameghiniana, 54(1): 70–82. https://doi.org/10.5710/amgh.11.09.2016.2997

    Article  Google Scholar 

  12. Faure, G., Pichon, M., Benzoni, F., et al., 2007. Knowledge Base of the Mascarene’s Corals, Vol. 2. [2018/01/24] http://lis-upmc.snv.jussieu.fr/xper2/basesHtml/coraux_Mascareignes_en/web/descriptors/Relationshi p_between_corallites_.html

    Google Scholar 

  13. Flügel, E., 2002, Triassic Reef Patterns. In: Kiessling, W., Flügel, E., Golonka, J., eds., Phanerozoic Reef Patterns, v. 72. SEPM, Tulsa. 391–463

  14. Frankowiak, K., Wang, X. T., Sigman, D. M., et al., 2016. Photosymbiosis and the Expansion of Shallow–Water Corals. Science Advances, 2(11): e1601122. https://doi.org/10.1126/sciadv.1601122

    Article  Google Scholar 

  15. Frech, F., 1890. Die Korallen der Trias.–I. Die Korallen der Juvavischen Triasprovinz. Paleontogarphica, 37: 1–116

    Google Scholar 

  16. González–León, C., Stanley, G. D. Jr., Lawton, T. F., et al., 2017. The Triassic/ Jurassic Boundary and the Jurassic Stratigraphy and Biostratigraphy of Northern Sonora, Northwest Mexico. Boletín de la Sociedad Geológica Mexicana, 69(3): 711–738. https://doi.org/10.18268/bsgm2017v69n3a11

    Article  Google Scholar 

  17. Greene, S. E., Martindale, R. C., Ritterbush, K. A., et al., 2012. Recognising Ocean Acidification in Deep Time: An Evaluation of the Evidence for Acidification across the Triassic–Jurassic Boundary. Earth–Science Reviews, 113: 72–93. https://doi.org/10.1016/j.earscirev.2012.03.009

    Google Scholar 

  18. Gretz, M., Lathuilière, B., Martini, R., et al., 2013. The Hettangian Corals of the Isle of Skye (Scotland): An Opportunity to Better Understand the Palaeoenvironmental Conditions during the Aftermath of the Triassic–Jurassic Boundary Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 376: 132–148.https://doi.org/10.1016/j.palaeo.2013.02.029

    Article  Google Scholar 

  19. Hautmann, M., 2012. Extinction: End–Triassic Mass Extinction. John Wiley & Sons, Ltd, Chichester. https://doi.org/10.1002/9780470015902.a0001655.pub3

    Google Scholar 

  20. Hautmann, M., Benton, M. J., Tomašových, A., 2008. Catastrophic Ocean Acidification at the Triassic–Jurassic Boundary. Neues Jahrbuch für Geologie und Paläontologie–Abhandlungen, 249(1): 119–127. https://doi.org/10.1127/0077-7749/2008/0249-0119

    Article  Google Scholar 

  21. Hodges, M. S., Stanley, G. D. Jr., 2015. North American Coral Recovery after the End–Triassic Mass Extinction, New York Canyon, Nevada, USA. GSA Today, 15(10): 4–9. https://doi.org/10.1130/gsatg249a.1

    Article  Google Scholar 

  22. Kiessling, W., Simpson, C., 2011. On the Potential for Ocean Acidification to be a General Cause of Ancient Reef Crises. Global Change Biology, 17(1): 56–67. https://doi.org/10.1111/j.1365-2486.2010.02204.x

    Article  Google Scholar 

  23. Kiessling, W., Aberhan, M., Brenneis, B., et al., 2007. Extinction Trajectories of Benthic Organisms across the Triassic–Jurassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1/2/3/4): 201–222. https://doi.org/10.1016/j.palaeo.2006.06.029

    Article  Google Scholar 

  24. Kiessling, W., Roniewicz, E., Villier, L., et al., 2009. An Early Hettangian Coral Reef in Southern France: Implications for the End–Triassic Reef Crisis. Palaios, 24(10): 657–671. https://doi.org/10.2110/palo.2009.p09-030r

    Article  Google Scholar 

  25. Lathuilière, B., Marchal, D., 2009. Extinction, Survival and Recovery of Corals from the Triassic to Middle Jurassic Time. Terra Nova, 21(1): 57–66. https://doi.org/10.1111/j.1365-3121.2008.00856.x

    Article  Google Scholar 

  26. Lindström, S., van de Schootbrugge, B., Hansen, K. H., et al., 2017. A New Correlation of Triassic–Jurassic Boundary Successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A Time–Line for the End–Triassic Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 80–102. https://doi.org/10.13039/100011044

    Article  Google Scholar 

  27. Lipps, J. H., Stanley, G. D. Jr., 2016. Photosymbiosis in the Past and Present Reefs. In: Hubbard, D. K., ed., Coral Reefs at the Crossroads. Coral Reefs of the World 6. Springer Science Publishers, Dordrecht. 47–68. doi 10.1007/978–94–017–7567–0_3

  28. Lucas, S. G., Tanner, L. H., 2008. Reexamination of the End–Triassic Mass Extinction. In: Elewa, A. M. T., ed., Mass Extinction. Springer Verlag, New York. 66–103

  29. Martindale, R. C., Berelson, W. M., Corsetti, F. A., et al., 2012. Constraining Carbonate Chemistry at a Potential Ocean Acidification Event (the Triassic–Jurassic Boundary) Using the Presence of Corals and Coral Reefs in the Fossil Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352: 114–123. https://doi.org/10.1016/j.palaeo.2012.06.020

    Article  Google Scholar 

  30. Marzoli, A., Renne, P. R., Piccirillo, E. M., et al., 1999. Extensive 200–Million–Year–Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science, 284(5414): 616–618. https://doi.org/10.1126/science.284.5414.616

    Article  Google Scholar 

  31. Melnikova, G. K., 2001. Chapter on Corals. In: Rozanov, A. Y., Shevyrev, A. A., eds., Atlas of Triassic Invertebrates of the Pamirs. Nauka, Moscow. 30–80

  32. Melnikova, G. K., Roniewicz, E., 2012. Early Jurassic Corals of the Pamir Mountains—A New Triassic–Jurassic Transitional Fauna. Geologica Belgica, 15: 376–381. https://popups.uliege.be:443/1374-8505/index.php?id=3859

    Google Scholar 

  33. Melnikova, G. K., Roniewicz, E., 2017. Early Jurassic Corals with Dominating Solitary Growth Forms from the Kasamurg Mountains, Central Asia. Palaeoworld, 26(1): 124–148. https://doi.org/10.1016/j.palwor.2016.01.001

    Article  Google Scholar 

  34. Negus, P. E., 1983. Distribution of the British Jurassic Corals. Proceedings of the Geologists’ Association, 94(3): 251–257. https://doi.org/10.1016/s0016-7878(83)80043-1

    Article  Google Scholar 

  35. Negus, P. E., 1991. Stratigraphical Table of Scleractinian Coral Genera and Species Occurring in the British Jurassic. Proceedings of the Geologists’ Association, 102(4): 251–259. https://doi.org/10.1016/s0016-7878(08)80084-3

    Article  Google Scholar 

  36. Nomade, S., Knight, K. B., Beutel, E., et al., 2007. Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic Rifting Processes and the Triassic–Jurassic Biotic Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1/2/3/4): 326–344. https://doi.org/10.1016/j.palaeo.2006.06.034

    Article  Google Scholar 

  37. Riedel, P., 1991. Korallen in der Trias der Tethys: Stratigraphische Reichweiten, Diversitätsmuster, Entwicklungstren. Mitt. Ges. Geol. Berbaustud Österreich, 37: 97–118

    Google Scholar 

  38. Roniewicz, E., 1989. Triassic Scleractinian Corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Österreichische Akademie der Wissenschaften Mathematisch–Naturwissenschaftliche Klasse Denkschriften, 126: 1–152

    Google Scholar 

  39. Roniewicz, E., 1996. Upper Triassic Solitary Corals from the Gosaukamm and other North Alpine Regions.Österreichische Akademie der Wissenschaften Sitzungsberichte Mathematisch–Naturwissenschaftliche Klasse Abt. I, 202: 3–41

    Google Scholar 

  40. Roniewicz, E., Morycowa, E., 1989. Triassic Scleractinia and the Triassic/ Liassic Boundary. Memoirs of the Association of Australasian Palaeontologists, 8: 347–354

    Google Scholar 

  41. Smith, J. P., 1927. Upper Triassic Marine Invertebrate Faunas of North America. U.S. Geological Survey Professional Paper, 141: 1–262

    Google Scholar 

  42. Squires, D. F., 1956. A New Triassic Coral Fauna from Idaho. American Museum Novitiates, 1797: 1–121

    Google Scholar 

  43. Stanley, G. D. Jr., 2006. Ecology: Photosymbiosis and the Evolution of Modern Coral Reefs. Science, 312(5775): 857–858. https://doi.org/10.1126/science.1123701

    Article  Google Scholar 

  44. Stanley, G. D. Jr., Beauvais, L., 1994. Corals from an Early Jurassic Coral Reef in British Columbia: Refuge on an Oceanic Island Reef. Lethaia, 27(1): 35–47. https://doi.org/10.1111/j.1502-3931.1994.tb01553.x

    Article  Google Scholar 

  45. Stanley, G. D. Jr., Cairns, S. D., 1988. Constructional Azooxanthellate Coral Communities: An Overview with Implications for the Fossil Record. Palaios, 3(2): 233. https://doi.org/10.2307/3514534

    Article  Google Scholar 

  46. Stanley, G. D. Jr., Lipps, J. H., 2011. Photosymbiosis: The Driving Force for Reef Success and Failure. Paleontological Society Paper, 17: 33–60. https://doi.org/10.1017/S1089332600002436

    Google Scholar 

  47. Stanley, G. D. Jr., McRoberts, C. A., 1993. A Coral Reef in the Telkwa Range, British Columbia: The Earliest Jurassic Example. Canadian Journal of Earth Sciences, 30(4): 819–831. https://doi.org/10.1139/e93-068

    Article  Google Scholar 

  48. Stanley, G. D. Jr., Swart, P. K., 1995. Evolution of the Coral–Zooxanthellae Symbiosis during the Triassic: A Geochemical Approach. Paleobiology, 21(2): 179–199. https://doi.org/10.1017/s0094837300013191

    Article  Google Scholar 

  49. Stanley, G. D. Jr., van de Schootbrugge, B., 2018. The Evolution of the Coral––Algal Symbiosis and Coral Bleaching in the Geologic Past. In: van Oppen, M. J. H., Lough, J. M., eds., Coral Bleaching: Patterns, Processes, Causes and Consequences (2 ed.): Ecological Studies, 233. Springer, Berlin. 7–19

  50. Stolarski, J., Russo, A., 2002. Microstructural Diversity of the Stylophyllid [Scleractinia] Skeleton. Acta Palaeontologica Polonica, 47: 651–666

    Google Scholar 

  51. Swain, T., Bold, E. C., Osborn, P. C., et al., 2018. Physiological Integration of Coral Colonies is Correlated with Bleaching Resistance. Marine Ecology Progress Series, 586: 1–10. https://doi.org/10.3354/meps12445

    Article  Google Scholar 

  52. Talent, J. A., 1988. Organic Reef–Building: Episodes of Extinction and Symbiosis? Senckenbergiana Lethaea, 69: 315–368

    Google Scholar 

  53. Tanner, L. H., Lucas, S. G., Chapman, M. G., 2004. Assessing the Record and Causes of Late Triassic Extinctions. Earth–Science Reviews, 65(1/2): 103–139. https://doi.org/10.1016/s0012-8252(03)00082-5

    Google Scholar 

  54. Tornabene, C., Martindale, R. C., Wang, X. T., et al., 2017. Detecting Photosymbiosis in Fossil Scleractinian Corals. Scientific Reports, 7: e9465, https://doi.org/10.1038/s41598-017-09008-4

    Article  Google Scholar 

  55. van de Schootbrugge, B., Tremolada, F., Rosenthal, Y., et al., 2007. End–Triassic Calcification Crisis and Blooms of Organic–Walled ‘Disaster Species’. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1/2/3/4): 126–141. https://doi.org/10.1016/j.palaeo.2006.06.026

    Article  Google Scholar 

  56. Wells, J. W., 1956. Scleractinia. In: Moore, R. C., ed., Treatise on Invertebrate Paleontology, Volume F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, KS. 353–367

  57. Wood, R., 1999. Reef Evolution. Oxford University Press, Oxford. 1–414

    Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Dr. Ewa Roniewicz who supplied valuable information on the corals. We also wish to acknowledge Mrs. Kallie Moore, collections manager at the University of Montana Paleontology Center, and Dr. Montana S. Hodges for their help with specimens and information on those specimens. Lastly, one of us (Robinson) wishes to acknowledge Mr. Rob Jensen of Hellgate High School, Missoula, for providing a platform where high school students can be given an opportunity to conduct scientific research. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0793-5..

Author information

Affiliations

Authors

Corresponding author

Correspondence to George D. Stanley Jr.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stanley, G.D., Shepherd, H.M.E. & Robinson, A.J. Paleoecological Response of Corals to the End-Triassic Mass Extinction: An Integrational Analysis. J. Earth Sci. 29, 879–885 (2018). https://doi.org/10.1007/s12583-018-0793-5

Download citation

Key words

  • coral loss
  • integration level
  • end-Triassic mass extinction
  • paleoecology