Advertisement

Journal of Earth Science

, Volume 29, Issue 4, pp 755–777 | Cite as

Correlation of Lopingian to Middle Triassic Palynozones

  • Hendrik NowakEmail author
  • Elke Schneebeli-Hermann
  • Evelyn Kustatscher
Article

Abstract

Terrestrial floras underwent important changes during the Lopingian (Late Permian), Early Triassic, and Middle Triassic, i.e., before, during, and after the end-Permian mass extinction. An accurate account of these developments requires reliable correlation. Macrofossils of land plants can only provide a low-resolution biostratigraphy, while detailed zonation schemes based on palynomorphs are available for many regions. Their applicability is still limited due to several factors, such as (micro-)floral provincialism, a lack of suitable marker taxa commonly occurring at important boundaries, and in many cases a lack of independent age control. Nevertheless, these palynostratigraphic schemes are regularly used for dating and correlation of successions between different regions. To support such efforts, the biozonation schemes based on palynomorphs from the Lopingian up to and including the Middle Triassic from across the world are summarized and revised. Thus, a consistent correlation of palynozones with the currently recognized international stages is established.

Key words

Permian Triassic land plants palynomorphs biostratigraphy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the Euregio Science Fund (call 2014, IPN16: "The end-Permian mass extinction in the Southern and Eastern Alps: extinction rates vs taphonomic biases in different depositional environments") of the Europaregion/Euregio Tirol-Südtirol-Trentino/Tirolo-Alto Adige-Trentino and by SYNTHESYS (access call 4, 2016, GB-TAF-6751: "Diversity changes of spores and pollen during the Permian-Triassic mass extinction"). We thank the two anonymous reviewers, whose suggestions helped us to improve the article substantially. This work is a contribution to IGCP Project 630—"Permian-Triassic climatic and environmental extremes and biotic response". The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0790-8..

References Cited

  1. Afonin, S. A., Barinova, S. S., Krassilov, V. A., 2001. A Bloom of Tympanicysta Balme (Green Algae of Zygnematalean Affinities) at the Permian–Triassic Boundary. Geodiversitas, 23(4): 481–487Google Scholar
  2. Anderson, J. M., 1977. Biostratigraphy of the Permian and Triassic, 3. Part 3: A Review of Gondwana Permian Palynology, with Particular Reference to the Northern Karoo Basin, South Africa. Memoirs of the Botanical Survey of South Africa. Botanical Research Institute, Department of Agricultural Technical Services, South Africa. 188Google Scholar
  3. Artabe, A. E., Morel, E. M., Spalletti, L. A., 2001. Paleoecología de las Floras Triásicas Argentinas. In: Artabe, A. E., Morel, E. M., Zamuner, A. B., eds., El Sistema Triásico en la Argentina. Fundación Museo de La Plata “Francisco Pascasio Moreno”, La Plata. 199–225Google Scholar
  4. Artabe, A. E., Morel, E. M., Spalletti, L. A. 2003. Caracterización de las Provincias Fitogeográficas Triásicas del Gondwana Extratropical. Ameghiniana, 40: 387–405Google Scholar
  5. Awatar, R., Tewari, R., Agnihotri, D., et al., 2014. Late Permian and Triassic Palynomorphs from the Allan Hills, Central Transantarctic Mountains, South Victoria Land, Antarctica. Current Science, 106(7): 988–996Google Scholar
  6. Bachmann, G. H., Kozur, H. W., 2004. The Germanic Triassic: Correlations with the International Chronostratigraphic Scale, Numerical Ages and Milankovitch Cyclicity. Hallesches Jahrbuch für Geowissenschaften, 26: 17–62Google Scholar
  7. Backhouse, J., 1990. Permian Palynostratigraphic Correlations in South–Western Australia and Their Geological Implications. Review of Palaeobotany and Palynology, 65(1/2/3/4): 229–237.  https://doi.org/10.1016/0034-6667(90)90073-r CrossRefGoogle Scholar
  8. Backhouse, J., 1991. Permian Palynostratigraphy of the Collie Basin, Western Australia. Review of Palaeobotany and Palynology, 67(3/4): 237–314.  https://doi.org/10.1016/0034-6667(91)90046-6 CrossRefGoogle Scholar
  9. Backhouse, J., 1993. Palynology and Correlation of Permian Sediments in the Perth, Collie, and Officer Basins, Western Australia. Geological Survey of Western Australia, Report, 34: 111–128Google Scholar
  10. Balarino, M. L., 2014. Permian Palynostratigraphy of the Claromecó Basin, Argentina. Alcheringa: An Australasian Journal of Palaeontology, 38(3): 317–337. https://doi.org/10.1080/03115518.2014.874709 CrossRefGoogle Scholar
  11. Balme, B. E., 1970. Palynology of Permian and Triassic Strata in the Salt Range and Surghar Range, West Pakistan. In: Kummel, B., Teichert, C., eds., Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan. University of Kansas Special Publication, 4: 305–453Google Scholar
  12. Balme, B. E., 1980. Palynology of Permian–Triassic Boundary Beds at Kap Stosch, East Greenland. Meddelelser om Grønland, 200(6): 1–37Google Scholar
  13. Benton, M. J., Tverdokhlebov, V. P., Surkov, M. V., 2004. Ecosystem Remodelling among Vertebrates at the Permian–Triassic Boundary in Russia. Nature, 432(7013): 97–100. https://doi.org/10.1038/nature02950 CrossRefGoogle Scholar
  14. Benton, M. J., Twitchett, R. J., 2003. How to Kill (Almost) All Life: The End–Permian Extinction Event. Trends in Ecology & Evolution, 18(7): 358–365.  https://doi.org/10.1016/s0169-5347(03)00093-4 CrossRefGoogle Scholar
  15. Bond, D. P. G., Wignall, P. B., Joachimski, M. M., et al., 2015. An Abrupt Extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and Its Link to Anoxia and Acidification. Geological Society of America Bulletin, 127(9/10): 1411–1421. https://doi.org/10.1130/b31216.1 CrossRefGoogle Scholar
  16. Bourquin, S., Rossignol, C., Jolivet, M., et al., 2018. Terrestrial Permian–Triassic Boundary in Southern China: New Stratigraphic, Structural and Palaeoenvironment Considerations. Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 640–652. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  17. Bourquin, S., Rossignol, C., Jolivet, M., et al., in Press. Reply to the Comment on “Terrestrial Permian–Triassic Boundary in Southern China: New Stratigraphic, Structural and Palaeoenvironment Considerations” by H. Zhang, Z. Feng, J. Ramezanik, S–Z Shen. Palaeogeography, Palaeoclimatology, Palaeoecology. https://doi.org/10.1016/j.palaeo.2018.02.021
  18. Brack, P., Rieber, H., Nicora, A., et al., 2005. The Global Boundary Stratotype Section and Point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and Its Implications for the Triassic Time Scale. Episodes, 28(4): 233–244Google Scholar
  19. Broglio Loriga, C., Cirilli, S., Zanche, V. D., et al., 1999. The Prati di Stuores/Stuores Wiesen Section (Dolomites, Italy): A Candidate Global Stratotype Section and Point for the Base of the Carnian Stage. Rivista Italiana di Paleontologia e Stratigrafia, 105(1): 37–78.  https://doi.org/10.13130/2039-4942/5365 Google Scholar
  20. Brühwiler, T., Bucher, H., Brayard, A., et al., 2010. High–Resolution Biochronology and Diversity Dynamics of the Early Triassic Ammonoid Recovery: The Smithian Faunas of the Northern Indian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(2): 491–501. https://doi.org/10.1016/j.palaeo.2010.09.001 CrossRefGoogle Scholar
  21. Brühwiler, T., Bucher, H., Roohi, G., et al., 2011. A New Early Smithian Ammonoid Fauna from the Salt Range (Pakistan). Swiss Journal of Palaeontology, 130(2): 187–201.  https://doi.org/10.1007/s13358-011-0018-3 CrossRefGoogle Scholar
  22. Brugman, W. A., 1983. Permian–Triassic Palynology. Laboratory of Palaeobotany and Palynology, University of Utrecht Utrecht. 121Google Scholar
  23. Brugman, W. A., 1986. A Palynological Characterization of the Upper Scythian and Anisian of the Transdanubian Central Range (Hungary) and the Vicentinian Alps (Italy): [Dissertation]. University of Utrecht, Utrecht. 1–95Google Scholar
  24. Brugman, W. A., Van Bergen, P. F., Kerp, J. H. F., 1994. A Quantitative Approach to Triassic Palynology: the Lettenkeuper of the Germanic Basin as an Example. In: Traverse, A., ed., Sedimentation of Organic Particles. Cambridge University Press, Cambridge. 409–429CrossRefGoogle Scholar
  25. Brugman, W. A., Visscher, H., 1988. Permian and Triassic Palynostratigraphy of Northeast Libya. In: El–Arnauti, A., Owens, B., Thusu, B., eds., Subsurface Palynostratigraphy of Northeast Libya. B. Garyounis University Publications, Benghazi, Libya. 157–170Google Scholar
  26. Cascales–Miñana, B., Cleal, C. J., 2014. The Plant Fossil Record Reflects Just Two Great Extinction Events. Terra Nova, 26(3): 195–200. https://doi.org/10.1111/ter.12086 CrossRefGoogle Scholar
  27. Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End–Permian Mass Extinction. Nature Geoscience, 5(6): 375–383. https://doi.org/10.1038/ngeo1475 CrossRefGoogle Scholar
  28. Chinese Triassic Working Group, 2007. Final Report of the GSSP Candidate for the I/O Boundary at West Pingdingshan Section in Chaohu, Southeastern China. Albertiana, 36: 10–21Google Scholar
  29. Cirilli, S., 2010. Upper Triassic–Lowermost Jurassic Palynology and Palynostratigraphy: A Review. Geological Society, London, Special Publications, 334(1): 285–314. https://doi.org/10.1144/sp334.12 CrossRefGoogle Scholar
  30. Cleal, C. J., 2016. A Global Review of Permian Macrofloral Biostratigraphical Schemes. Geological Society, London, Special Publications, 450(1): 349–364. https://doi.org/10.1144/sp450.4 Google Scholar
  31. Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36: 199–204Google Scholar
  32. Dal Corso, J., Roghi, G., Kustatscher, E., et al., 2015. Ammonoid–Calibrated Sporomorph Assemblages Reflect a Shift from Hygrophytic to Xerophytic Elements in the Late Anisian (Middle Triassic) of the Southern Alps (Italy). Review of Palaeobotany and Palynology, 218: 15–27. https://doi.org/10.1016/j.revpalbo.2014.02.010 CrossRefGoogle Scholar
  33. Deutsche Stratigraphische Kommission, 2016. Stratigraphische Tabelle von Deutschland 2016. Geo Forschungs Zentrum, Potsdam. 1 (in German)Google Scholar
  34. Dobruskina, I. A., 1987. Phytogeography of Eurasia during the Early Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 58(1/2): 75–86.  https://doi.org/10.1016/0031-0182(87)90007-1 CrossRefGoogle Scholar
  35. Dobruskina, I.A., 1994. Triassic Floras of Eurasia. Springer, Wien. 422Google Scholar
  36. Dolby, J. H., Balme, B. E., 1976. Triassic Palynology of the Carnarvon Basin, Western Australia. Review of Palaeobotany and Palynology, 22(2): 105–168.  https://doi.org/10.1016/0034-6667(76)90053-1 CrossRefGoogle Scholar
  37. Eshet, Y., 1990. Paleozoic–Mesozoic Palynology of Israel: I. Palynological Aspects of the Permo–Triassic Succession in the Subsurface of Israel. Geological Survey of Israel, Israel. 57Google Scholar
  38. Eshet, Y., Cousminer, H. L., 1986. Palynozonation and Correlation of the Permo–Triassic Succession in the Negev, Israel. Micropaleontology, 32(3): 193–214. https://doi.org/10.2307/1485617 CrossRefGoogle Scholar
  39. Evans, P. R., 1966. Mesozoic Stratigraphic Palynology in Australia. Australasian Oil and Gas Journal, 12(6): 58–63Google Scholar
  40. Falcon, R. S., 1975. Palyno–Stratigraphy of the Lower Karroo Sequence in the Central Sebungwe District, Mid–Zambezi Basin, Rhodesia. Palaeontologia Africana, 18: 1–29Google Scholar
  41. Fijalkowska, A., 1994. Palynological Aspects of the Permo–Triassic Succession in the Holy Cross Mountains, Poland. Documenta Naturae, 87: 1–76Google Scholar
  42. Foster, C. B., 1982. Spore–Pollen Assemblages of the Bowen Basin, Queensland (Australia): Their Relationship to the Permian/Triassic Boundary. Review of Palaeobotany and Palynology, 36(1/2): 165–183.  https://doi.org/10.1016/0034-6667(82)90016-1 CrossRefGoogle Scholar
  43. Foster, C. B., Afonin, S. A., 2006. Syndesmorion Gen. Nov.—A Coenobial Alga of Chlorococcalean Affinity from the Continental Permian–Triassic Deposits of Dalongkou Section, Xinjiang Province, China. Review of Palaeobotany and Palynology, 138(1): 1–8. https://doi.org/10.1016/j.revpalbo.2005.09.003 Google Scholar
  44. Foster, C. B., Afonin, S. A., 2005. Abnormal Pollen Grains: An Outcome of Deteriorating Atmospheric Conditions around the Permian–Triassic Boundary. Journal of the Geological Society, 162(4): 653–659.  https://doi.org/10.1144/0016-764904-047 CrossRefGoogle Scholar
  45. Foster, C. B., Stephenson, M. H., Marshall, C., et al., 2002. A Revision of Reduviasporonites Wilson 1962: Description, Illustration, Comparison and Biological Affinities. Palynology, 26(1): 35–58. https://doi.org/10.2113/0260035 CrossRefGoogle Scholar
  46. Fuglewicz, R., 1980. Some New Megaspore Species of the Triassic of Poland. Acta Palaeontologica Polonica, 25(2): 233–241Google Scholar
  47. Gaetani, M., 2009. GSSP of the Carnian Stage Defined. Albertiana, 37: 36–38Google Scholar
  48. Góczán, F., Oravecz–Scheffer, A., Szabó, I., 1986. Biostratigraphic Zonation of the Lower Triassic in the Transdanubian Central Range. Acta Geologica Hungarica, 29(3/4): 233–259Google Scholar
  49. Gomankov, A. V., Balme, B. E., Foster, C. B., 1998. Tatarian Palynology of the Russian Platform: A Review. Proceedings of the Royal Society of Victoria, 110(1/2): 115–136Google Scholar
  50. Goubin, N., 1965. Description et Répartition des Principaux Pollenites Permiens, Triasiques et Jurassiques des Sondages du Bassin de Morondava (Madagascar). Revue de l’Institut Français du Pétrole, 20(10): 1415–1459 (in French with English Abstract)Google Scholar
  51. Gradinaru, E., Orchard, M. J., Nicora, A., et al., 2007. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Anisian Stage: Desli Caira Hill, North Dobrogea, Romania. Albertiana, 36: 54–71Google Scholar
  52. Grauvogel–Stamm, L., Ash, S. R., 2005. Recovery of the Triassic Land Flora from the End–Permian Life Crisis. Comptes Rendus Palevol, 4(6/7): 593–608. https://doi.org/10.1016/j.crpv.2005.07.002 CrossRefGoogle Scholar
  53. Grauvogel–Stamm, L., Kustatscher, E., in press. Floren der Germanischen Trias: Die Floren des Buntsandsteins und des Muschelkalks. In: Trias––Eine Andere Welt. Pfeil Verlag, München.Google Scholar
  54. Guex, J., 1978. Le Trias Inférieur des Salt Ranges (Pakistan): Problèmes Biochronologiques. Eclogae Geologicae Helvetiae, 71(1): 105–141Google Scholar
  55. Hankel, O., 1993. Early Triassic Plant Microfossils from Sakamena Sediments of the Majunga Basin, Madagascar. Review of Palaeobotany and Palynology, 77(3/4): 213–233.  https://doi.org/10.1016/0034-6667(93)90005-f CrossRefGoogle Scholar
  56. Haq, B. U., Al–Qahtani, A. M., 2005. Phanerozoic Cycles of Sea–Level Change on the Arabian Platform. GeoArabia, 10(2): 127–160Google Scholar
  57. Hart, G. F., 1970. Micropaleontology of the Karroo Deposits in South and Central Africa. In: Reviews Prepared for the 1st Symposium on Gondwana Stratigraphy, 1967, Mar Del Plata. International Union of Geological Sciences, Comm. Study Geol. Documentation. 161–172Google Scholar
  58. Hart, G. F., 1971. The Gondwana Permian Palynofloras. Anais da Academia Brasileira de Ciências, 43(Supl.): 145–176Google Scholar
  59. Helby, R., 1973. Review of Late Permian and Triassic Palynology of New South Wales. Geological Society of Australia Special Publication, 4: 141–155Google Scholar
  60. Helby, R., Morgan, R., Partridge, A. D., 1987. A Palynological Zonation of the Australian Mesozoic. Memoir of the Association of Australasian Palaeontologists, 4: 1–94Google Scholar
  61. Hermann, E., Hochuli, P. A., Bucher, H., et al., 2012. Uppermost Permian to Middle Triassic Palynology of the Salt Range and Surghar Range, Pakistan. Review of Palaeobotany and Palynology, 169: 61–95. https://doi.org/10.1016/j.revpalbo.2011.10.004 CrossRefGoogle Scholar
  62. Hermann, E., Hochuli, P. A., Méhay, S., et al., 2011. Organic Matter and Palaeoenvironmental Signals during the Early Triassic Biotic Recovery: The Salt Range and Surghar Range Records. Sedimentary Geology, 234(1/2/3/4): 19–41. https://doi.org/10.1016/j.sedgeo.2010.11.003 CrossRefGoogle Scholar
  63. Herngreen, G. F. W., 2005. Triassic Sporomorphs of NW Europe: Taxonomy, Morphology, and Ranges of Marker Species, with Remarks on Botanical Relationship and Ecology, and Comparison with Ranges in the Alpine Triassic. Kenniscentrum Biogeology, Utrecht. 83Google Scholar
  64. Heunisch, C., 1999. Die Bedeutung der Palynologie für Biostratigraphie und Fazies in der Germanischen Trias. In: Hauschke, N., Wilde, V., eds., Trias—Eine Ganz Andere Welt. Pfeil Verlag, München. 207–220 (in German)Google Scholar
  65. Hochuli, P. A., 2016. Interpretation of “Fungal Spikes” in Permian–Triassic Boundary Sections. Global and Planetary Change, 144: 48–50. https://doi.org/10.1016/j.gloplacha.2016.05.002 CrossRefGoogle Scholar
  66. Hochuli, P. A., Colin, J. P., Vigran, J. O., 1989. Triassic Biostratigraphy of the Barents Sea Area. In: Collinson, J. D., ed., Correlation in Hydrocarbon Exploration. Springer, Netherlands. 131–153.  https://doi.org/10.1007/978-94-009-1149-9_12 CrossRefGoogle Scholar
  67. Hochuli, P. A., Roghi, G., 2002. A Palynological View on the Anisian/ Ladinian Boundary—New Results from the Seceda Section (Dolomites, Northern Italy). In: IUGS Commission on Triassic Stratigraphy, STS/IGCP, Field Meeting. 29–30Google Scholar
  68. Hochuli, P. A., Roghi, G., Brack, P., 2015. Palynological Zonation and Particulate Organic Matter of the Middle Triassic of the Southern Alps (Seceda and Val Gola–Margon Sections, Northern Italy). Review of Palaeobotany and Palynology, 218: 28–47. https://doi.org/10.1016/j.revpalbo.2014.07.006 CrossRefGoogle Scholar
  69. Horowitz, A., 1974. Palynostratigraphy of the Subsurface Carboniferous, Permian, and Triassic in Southern Israel. Geoscience and Man, 9(1): 63–70. https://doi.org/10.1080/00721395.1974.9989750 CrossRefGoogle Scholar
  70. Hounslow, M. W., Hu, M. Y., Mørk, A., et al., 2008. Intercalibration of Boreal and Tethyan Time Scales: The Magnetobiostratigraphy of the Middle Triassic and the Latest Early Triassic from Spitsbergen, Arctic Norway. Polar Research, 27(3): 469–490.  https://doi.org/10.1111/j.1751-8369.2008.00074.x CrossRefGoogle Scholar
  71. Hounslow, M. W., Muttoni, G., 2010. The Geomagnetic Polarity Timescale for the Triassic: Linkage to Stage Boundary Definitions. Geological Society, London, Special Publications, 334(1): 61–102. https://doi.org/10.1144/sp334.4 CrossRefGoogle Scholar
  72. Hounslow, M. W., Szurlies, M., Muttoni, G., et al., 2007. The Magnetostratigraphy of the Olenekian–Anisian Boundary and a Proposal to Define the Base of the Anisian Using a Magnetozone Datum. Albertiana, 36: 72–77Google Scholar
  73. Jha, N., 2006. Permian Palynology from India and Africa––A Phytogeographical Paradigm. Journal of the Palaeontological Society of India, 51(1): 43–55Google Scholar
  74. Ji, L., Ouyang, S., 2005. Lower Triassic Spore–Pollen Assemblages from the Lower Subgroup of Bayanharshan Group, Qinghai. Acta Palaeontologica Sinica, 45(4): 473–493 (in Chinese with English Summary)Google Scholar
  75. Jin, Y., Shen, S., Henderson, C. M., et al., 2006a. The Global Stratotype Section and Point (GSSP) for the Boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 29(4): 253–262Google Scholar
  76. Jin, Y., Wang, Y., Henderson, C., et al., 2006b. The Global Boundary Stratotype Section and Point (GSSP) for the Base of Changhsingian Stage (Upper Permian). Episodes, 29(3): 175Google Scholar
  77. Kirichkova, A. I., Kulikova, N. K., 2002. Correlation of Different–Facies Triassic Deposits of the Eastern Urals and Siberia. Stratigraphy and Geological Correlation, 10(5): 488–502 (in Russian)Google Scholar
  78. Kirichkova, A. I., Kulikova, N. K., 2005. The Problem of Correlation between Triassic Continental Sequences of Southern Germany, the Timan–Pechora Region, and Eastern Ural. Stratigraphy and Geological Correlation, 13(4): 86–100Google Scholar
  79. Kozur, H. W., 1998. Some Aspects of the Permian–Triassic Boundary (PTB) and of the Possible Causes for the Biotic Crisis around this Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 143(4): 227–272.  https://doi.org/10.1016/s0031-0182(98)00113-8 CrossRefGoogle Scholar
  80. Kozur, H. W., Bachmann, G. H., 2005. Correlation of the Germanic Triassic with the International Scale. Albertiana, 32: 21–35Google Scholar
  81. Kozur, H. W., Bachmann, G. H., 2008. Updated Correlation of the Germanic Triassic with the Tethyan Scale and Assigned Numeric Ages. Berichte der Geologischen Bundesanstalt, 76: 53–58Google Scholar
  82. Krassilov, V. A., Afonin, S. A., Lozovsky, V. R., 1999. Floristic Evidence of Transitional Permian–Triassic Deposits of the Volga–Dvina Region. Permophiles, 34, 12–14.Google Scholar
  83. Krystyn, L., Bhargava, O. N., Richoz, S., 2007a. A Candidate GSSP for the Base of the Olenekian Stage: Mud at Pin Valley; District Lahul & Spiti, Himachal Pradesh (Western Himalaya), India. Albertiana, 35: 5–29Google Scholar
  84. Krystyn, L., Richoz, S., Bhargava, O. N., 2007b. The Induan–Olenekian Boundary (IOB) in Mud––An Update of the Candidate GSSP Section M04. Albertiana, 36: 33–45Google Scholar
  85. Kummel, B., Teichert, C., 1970. Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan, University of Kansas Special Publication. University Press of Kansas, Lawrence, Kansas. 474Google Scholar
  86. Kürschner, W. M., Herngreen, G. F. W., 2010. Triassic Palynology of Central and Northwestern Europe: A Review of Palynofloral Diversity Patterns and Biostratigraphic Subdivisions. Geological Society, London, Special Publications, 334(1): 263–283. https://doi.org/10.1144/SP334.11 CrossRefGoogle Scholar
  87. Kustatscher, E., Ash, S. R., Karasev, E., et al., 2018. Flora of the Late Triassic. In: Tanner, L. H., ed., The Late Triassic World. Springer, Cham. 545–622.  https://doi.org/10.1007/978-3-319-68009-5_13 CrossRefGoogle Scholar
  88. Kustatscher, E., Franz, M., Heunisch, C., et al., 2014. Floodplain Habitats of Braided River Systems: Depositional Environment, Flora and Fauna of the Solling Formation (Buntsandstein, Lower Triassic) from Bremke and Fürstenberg (Germany). Palaeobiodiversity and Palaeoenvironments, 94(2): 237–270.  https://doi.org/10.1007/s12549-014-0161-0 CrossRefGoogle Scholar
  89. Kustatscher, E., Manfrin, S., Mietto, P., et al., 2006. New Biostratigraphic Data on Anisian (Middle Triassic) Palynomorphs from the Dolomites, Italy. Review of Palaeobotany and Palynology, 140(1/2): 79–90. https://doi.org/10.1016/j.revpalbo.2006.03.003 CrossRefGoogle Scholar
  90. Kustatscher, E., Roghi, G., 2006. Anisian Palynomorphs from the Dont Formation of the Kühwiesenkopf/Monte Prà Della Vacca Section (Northern Italy). Micropaleontology, 52(3): 223–244. https://doi.org/10.2113/gsmicropal.52.3.223 CrossRefGoogle Scholar
  91. Kyle, R. A., 1977. Palynostratigraphy of the Victoria Group of South Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 20(6): 1081–1102. https://doi.org/10.1080/00288306.1977.10420697 CrossRefGoogle Scholar
  92. Laurie, J. R., Bodorkos, S., Nicoll, R. S., et al., 2016. Calibrating the Middle and Late Permian Palynostratigraphy of Australia to the Geologic Time–Scale via U–Pb Zircon CA–IDTIMS Dating. Australian Journal of Earth Sciences, 63(6): 701–730. https://doi.org/10.1080/08120099.2016.1233456 CrossRefGoogle Scholar
  93. Lindström, S., 1995. Early Late Permian Palynostratigraphy and Palaeo–Biogeography of Vestfjella, Dronning Maud Land, Antarctica. Review of Palaeobotany and Palynology, 86(1/2): 157–173.  https://doi.org/10.1016/0034-6667(94)00104-r CrossRefGoogle Scholar
  94. Liu, F., Zhu, H. C., Ouyang, S., 2011. Taxonomy and Biostratigraphy of Pennsylvanian to Late Permian Megaspores from Shanxi, North China. Review of Palaeobotany and Palynology, 165(3/4): 135–153. https://doi.org/10.1016/j.revpalbo.2011.03.001 CrossRefGoogle Scholar
  95. Liu, F., Zhu, H. C., Ouyang, S., 2015. Late Pennsylvanian to Wuchiapingian Palynostratigraphy of the Baode Section in the Ordos Basin, North China. Journal of Asian Earth Sciences, 111: 528–552. https://doi.org/10.1016/j.jseaes.2015.06.013 CrossRefGoogle Scholar
  96. Liu, S., 1994. The Non–Marine Permian–Triassic Boundary and Triassic Conchostracan Fossils in China. Albertiana, 13: 12–24Google Scholar
  97. Looy, C. V., Collinson, M. E., Van Konijnenburg–Van Cittert, J. H. A., et al., 2005. The Ultrastructure and Botanical Affinity of End–Permian Spore Tetrads. International Journal of Plant Sciences, 166(5): 875–887. https://doi.org/10.1086/431802 CrossRefGoogle Scholar
  98. Loutfi, G., Abdel Sattar, M. M., 1987. Geology and Hydrocarbon Potential of the Triassic Succession in Abu Dhabi, UAE. In: SPE. Presented at the Fifth SPE Middle East Oil Show. Society of Petroleum Engineers, Manama, Bahrain. 717–735Google Scholar
  99. Lozovsky, V. R., Balabanov, Y. P., Karasev, E. V., et al., 2016. The Terminal Permian in European Russia: Vyaznikovian Horizon, Nedubrovo Member, and Permian–Triassic Boundary. Stratigraphy and Geological Correlation, 24(4): 364–380. https://doi.org/10.1134/S0869593816040043 CrossRefGoogle Scholar
  100. Lozovsky, V. R., Krassilov, V. A., Afonin, S. A., et al., 2001. Transitional Permian–Triassic Deposits in European Russia, and Non–Marine Correlations. Natura Bresciana’Annuario del Museo Civico di Scienze Naturale, Brescia, Monografia, 25: 301–310Google Scholar
  101. Mantle, D. J., Kelman, A. P., Nicoll, R. S., et al., 2010. Australian Biozonation Chart 2010, Part 1: Australian and Selected International Biozonation Schemes Tied to the GTS 2004 Geological Timescale. Geoscience Australia, Perth. 1Google Scholar
  102. Marcinkiewicz, T., Fijalkowska–Mader, A., Pienkowski, G., 2014. Poziomy Megasporowe Epikontynentalnych Utworów Triasu i Jury W Polsce–Podsumowanie [Megaspore Zones of the Epicontinental Triassic and Jurassic Deposits in Poland–Overview]. Biuletyn Panstwowego Instytutu Geologicznego, 457: 15–42. https://doi.org/10.5604/08676143.1113255 (in Polish with English Summary)CrossRefGoogle Scholar
  103. Matthews, K. J., Maloney, K. T., Zahirovic, S., et al., 2016. Global Plate Boundary Evolution and Kinematics since the Late Paleozoic. Global and Planetary Change, 146(Suppl.): 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002 CrossRefGoogle Scholar
  104. McLoughlin, S., Lindström, S., Drinnan, A. N., 1997. Gondwanan Floristic and Sedimentological Trends during the Permian–Triassic Transition: New Evidence from the Amery Group, Northern Prince Charles Mountains, East Antarctica. Antarctic Science, 9(3): 281–298. https://doi.org/10.1017/s0954102097000370 CrossRefGoogle Scholar
  105. Metcalfe, I., Crowley, J. L., Nicoll, R. S., et al., 2015. High–Precision U–Pb CA–TIMS Calibration of Middle Permian to Lower Triassic Sequences, Mass Extinction and Extreme Climate–Change in Eastern Australian Gondwana. Gondwana Research, 28(1): 61–81. https://doi.org/10.1016/j.gr.2014.09.002 CrossRefGoogle Scholar
  106. Mietto, P., Manfrin, S., 1995. A High Resolution Middle Triassic Ammonoid Standard Scale in the Tethys Realm: A Preliminary Report. Bulletin de la Société Géologique de France, 166(5): 539–563. https://doi.org/10.2113/gssgfbull.166.5.539 Google Scholar
  107. Mietto, P., Manfrin, S., Preto, N., et al., 2012. The Global Boundary Stratotype Section and Point (GSSP) of the Carnian Stage (Late Triassic) at Prati di Stuores/Stuores Wiesen Section (Southern Alps, NE Italy). Episodes, 35(3): 414–430Google Scholar
  108. Mojsisovics, E. V., Waagen, W., Diener, C., 1895. Entwurf Einer Gliederung der Pelagischen Sedimente des Trias–Systems. Sitzungsberichte der Akademie der Wissenschaften, Wien, Naturwissenschaftlich–Mathematische Klasse, 104(1): 1271–1302 (in German)Google Scholar
  109. Morel, E. M., Artabe, A. E., Spalletti, L. A., 2003. Triassic Floras of Argentina: Biostratigraphy, Floristic Events and Comparison with other Areas of Gondwana and Laurasia. Alcheringa: An Australasian Journal of Palaeontology, 27(3): 231–243. https://doi.org/10.1080/03115518.2003.10384472 CrossRefGoogle Scholar
  110. Mørk, A., Elvebakk, G., Forsberg, A. W., et al., 1999. The Type Section of the Vikinghøgda Formation: A New Lower Triassic Unit in Central and Eastern Svalbard. Polar Research, 18(1): 51–82. https://doi.org/10.3402/polar.v18i1.6558 CrossRefGoogle Scholar
  111. Mørk, A., Vigran, J. O., Hochuli, P. A., 1990. Geology and Palynology of the Triassic Succession of Bjørnøya. Polar Research, 8(2): 141–163. https://doi.org/10.3402/polar.v8i2.6810 Google Scholar
  112. Mory, A. J., Backhouse, J., 1997. Permian Stratigraphy and Palynology of the Carnarvon Basin, Western Australia. Geological Survey of Western Australia, Perth. 43Google Scholar
  113. Nader, A. D., Khalaf, F. H., Hadid, A. A., 1992. Palynology of the Permo–Triassic Boundary in Borehole Mityaha–1 Southwest Mosul City–Iraq. Mu’tah Journal for Research and Studies, 8(4): 223–280Google Scholar
  114. Nowak, H., Kustatscher, E., Schneebeli–Hermann, E., 2017. Land Plant Fossils and the Induan–Olenekian Boundary. Geo.Alp, 14: 129–131Google Scholar
  115. Nyambe, I. A., Utting, J., 1997. Stratigraphy and Palynostratigraphy, Karoo Supergroup (Permian and Triassic), Mid–Zambezi Valley, Southern Zambia. Journal of African Earth Sciences, 24(4): 563–583.  https://doi.org/10.1016/s0899-5362(97)00081-x CrossRefGoogle Scholar
  116. Ogg, J. G., Huang, C., Hinnov, L., 2014. Triassic Timescale Status: A Brief Overview. Albertiana, 41: 3–30Google Scholar
  117. Ogg, J. G., Ogg, G., Gradstein, F. M., 2016. A Concise Geologic Time Scale 2016. Elsevier, Amsterdam. 243Google Scholar
  118. Orlowska–Zwolinska, T., 1977. Palynological Correlation of the Bunter and Muschelkalk in Selected Profiles from Western Poland. Acta Geologica Polonica, 27(4): 417–430Google Scholar
  119. Orlowska–Zwolinska, T., 1984. Palynostratigraphy of the Buntsandstein in Sections of Western Poland. Acta Palaeontologica Polonica, 29(3/4): 161–194Google Scholar
  120. Orlowska–Zwolinska, T., 1985. Palynological Zones of the Polish Epicontinental Triassic. Bulletin of the Polish Academy of Sciences, Earth Sciences, 33(3/4): 109–117Google Scholar
  121. Orlowska–Zwolinska, T., 1988. Palynostratigraphy of Triassic Deposits in the vicinity of Brzeg (SE Part of the Fore–Sudetic Monocline). Geological Quarterly, 32: 349–366 (in Polish with English Summary)Google Scholar
  122. Ouyang, S., 1982. Upper Permian and Lower Triassic Palynomorphs from Eastern Yunnan, China. Canadian Journal of Earth Sciences, 19(1): 68–80.  https://doi.org/10.1139/e82-006 CrossRefGoogle Scholar
  123. Ouyang, S., Norris, G., 1988. Spores and Pollen from the Lower Triassic Heshanggou Formation, Shaanxi Province, North China. Review of Palaeobotany and Palynology, 54(3/4): 187–231.  https://doi.org/10.1016/0034-6667(88)90015-2 Google Scholar
  124. Ouyang, S., Norris, G., 1999. Earliest Triassic (Induan) Spores and Pollen from the Junggar Basin, Xinjiang, Northwestern China. Review of Palaeobotany and Palynology, 106(1/2): 1–56.  https://doi.org/10.1016/s0034-6667(98)00078-5 CrossRefGoogle Scholar
  125. Ouyang, S., Utting, J., 1990. Palynology of Upper Permian and Lower Triassic Rocks, Meishan, Changxing County, Zhejiang Province, China. Review of Palaeobotany and Palynology, 66(1/2): 65–103.  https://doi.org/10.1016/0034-6667(90)90029-i Google Scholar
  126. Peng, Y. Q., Yu, J. X., Gao, Y. Q., et al., 2006. Palynological Assemblages of Non–Marine Rocks at the Permian–Triassic Boundary, Western Guizhou and Eastern Yunnan, South China. Journal of Asian Earth Sciences, 28(4/5/6): 291–305. https://doi.org/10.1016/j.jseaes.2005.10.007 CrossRefGoogle Scholar
  127. Peng, Y. Q., Zhang, S. X., Yu, T. X., et al., 2005. High–Resolution Terrestrial Permian–Triassic Eventostratigraphic Boundary in Western Guizhou and Eastern Yunnan, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(3/4): 285–295. https://doi.org/10.1016/j.palaeo.2004.09.009 CrossRefGoogle Scholar
  128. Peng, J. G., Li, J. G., Li, W. B., et al., 2017. The Triassic to Early Jurassic Palynological Record of the Tarim Basin, China. Palaeobiodiversity and Palaeoenvironments, 98(1): 7–28. https://doi.org/10.13039/501100002367 CrossRefGoogle Scholar
  129. Peng, J. G., Li, J. G., Slater, S. M., et al., 2018. Triassic Palynostratigraphy and Palynofloral Provinces: Evidence from Southern Xizang (Tibet), China. Alcheringa: An Australasian Journal of Palaeontology, 42(1): 67–86. https://doi.org/10.1080/03115518.2017.1370726 CrossRefGoogle Scholar
  130. Pereira, Z., Fernandes, P., Lopes, G., et al., 2016. The Permian–Triassic Transition in the Moatize–Minjova Basin, Karoo Supergroup, Mozambique: A Palynological Perspective. Review of Palaeobotany and Palynology, 226: 1–19. https://doi.org/10.1016/j.revpalbo.2015.12.001 CrossRefGoogle Scholar
  131. Piasecki, S., 1984. Preliminary Palynostratigraphy of the Permian–Lower Triassic Sediments in Jameson Land and Scoresby Land, East Greenland. Bulletin of the Geological Society of Denmark, 32: 139–144Google Scholar
  132. Playford, G., Dino, R., 2000. Palynostratigraphy of Upper Palaeozoic Strata (Tapajós Group), Amazonas, Brazil: Part Two. Palaeontographica Abteilung B, 255(4/5/6): 87–145Google Scholar
  133. Price, P. L., 1997. Permian to Jurassic Palynostratigraphic Nomenclature of the Bowen and Surat Basins. In: Green, P. M., ed., The Surat and Bowen Basins South–East Queensland. Queensland Department of Mines and Energy, Brisbane. 137–178Google Scholar
  134. Rampino, M. R., Eshet, Y., 2017. The Fungal and Acritarch Events as Time Markers for the Latest Permian Mass Extinction: An Update. Geoscience Frontiers, 9(1): 147–154. https://doi.org/10.1016/j.gsf.2017.06.005 CrossRefGoogle Scholar
  135. Rees, P. M., 2002. Land–Plant Diversity and the End–Permian Mass Extinction. Geology, 30(9): 827–830.  https://doi.org/10.1130/0091-7613(2002)030<0827:LPDATE>2.0.CO;2 CrossRefGoogle Scholar
  136. Reitz, E., 1985. Palynologie der Trias in Nordhessen und Südniedersachsen. Hessisches Amt für Bodenforschung, Wiesbaden. 36Google Scholar
  137. Reitz, E., 1988. Palynostratigraphie des Buntsandsteins in Mitteleuropa. Geologisches Jahrbuch Hessen, 116: 105–112Google Scholar
  138. Retallack, G. J., 1995. Permian–Triassic Life Crisis on Land. Science, 267(5194): 77–80. https://doi.org/10.1126/science.267.5194.77 CrossRefGoogle Scholar
  139. Roghi, G., 1995. Analisi Palinologica del Trias Medio del Sudalpino: [Dissertation]. Università degli Studi di Padova, Padova. 111 (in Italian)Google Scholar
  140. Schneebeli–Hermann, E., Hochuli, P. A., Bucher, H., 2017. Palynofloral Associations before and after the Permian–Triassic Mass Extinction, Kap Stosch, East Greenland. Global and Planetary Change, 155: 178–195. https://doi.org/10.1016/j.gloplacha.2017.06.009 CrossRefGoogle Scholar
  141. Scholze, F., Wang, X., Kirscher, U., et al., 2017. A Multistratigraphic Approach to Pinpoint the Permian–Triassic Boundary in Continental Deposits: The Zechstein–Lower Buntsandstein Transition in Germany. Global and Planetary Change, 152: 129–151. https://doi.org/10.13039/501100001659 CrossRefGoogle Scholar
  142. Sharland, P. R., Archer, R., Casey, D. M., et al., 2001. Arabian Plate Sequence Stratigraphy, GeoArabia, Special Publication. Bahrain. 371Google Scholar
  143. Sidor, C. A., Vilhena, D. A., Angielczyk, K. D., et al., 2013. Provincialization of Terrestrial Faunas Following the End–Permian Mass Extinction. Proceedings of the National Academy of Sciences, 110(20): 8129–8133. https://doi.org/10.1073/pnas.1302323110 CrossRefGoogle Scholar
  144. Silvestro, D., Cascales–Miñana, B., Bacon, C. D., et al., 2015. Revisiting the Origin and Diversification of Vascular Plants through a Comprehensive Bayesian Analysis of the Fossil Record. New Phytologist, 207(2): 425–436. https://doi.org/10.1111/nph.13247 CrossRefGoogle Scholar
  145. Smith, T. E., Mantle, D. J., 2013. Late Permian Palynozones and Associated CA–IDTIMS Dated Tuffs from the Bowen Basin, Australia. Geoscience Australia, Canberra. 39Google Scholar
  146. Spalletti, L. A., Artabe, A. E., Morel, E. M., et al., 1999. Biozonación Paleoflorística y Cronoestratigrafía del Triásico Argentino. Ameghiniana, 35(4): 419–451 (in Spanish with English Abstract)Google Scholar
  147. Steiner, M. B., Eshet, Y., Rampino, M. R., et al., 2003. Fungal Abundance Spike and the Permian–Triassic Boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 194(4): 405–414.  https://doi.org/10.1016/s0031-0182(03)00230-x CrossRefGoogle Scholar
  148. Stephenson, M. H., 2016. Permian Palynostratigraphy: A Global Overview. Geological Society, London, Special Publications, 450(1): 321–347. https://doi.org/10.1144/sp450.2 CrossRefGoogle Scholar
  149. Sun, G., Meng, F., Qian, L., et al., 1995. Triassic Floras. In: Li, X., Zhou, Z., Cai, Z., et al., eds., Fossil Floras of China through the Geological Ages. Guangdong Science and Technology Press, Guangzhou. 305–410Google Scholar
  150. Teichert, C., Kummel, B., 1972. Permian–Triassic Boundary in the Kap Stosch Area, East Greenland. Bulletin of Canadian Petroleum Geology, 20(4), 659–675Google Scholar
  151. Tiwari, R. S., 1999a. The Palynological Succession and Spatial Relationship of the Indian Gondwana Sequence. Proceedings–Indian National Science Academy Part A, 65(3): 329–376Google Scholar
  152. Tiwari, R. S., 1999b. Towards a Gondwana Palynochronology. Journal of the Palaeontological Society of India, 44: 1–14Google Scholar
  153. Tiwari, R. S., Kumar, R., 2002. Indian Gondwana Palynochronology: Relationships and Chronocalibration. The Palaeobotanist, 51: 13–30Google Scholar
  154. Tiwari, R. S., Tripathi, A., 1992. Marker Assemblage–Zones of Spores and Pollen Species through Gondwana Palaeozoic and Mesozoic Sequence in India. Palaeobotanist, 40: 199–236Google Scholar
  155. Tiwari, R. S., Vijaya, 1994. Synchroneity of Palynological Events and Patterns of Extinction at Permo–Triassic Boundary in Terrestrial Sequence of India. In: Guex, J., Baud, A., eds., Recent Developments on Triassic Stratigraphy. Proceedings of the Triassic Symposium, Lausanne, 20–25 Oct., 1991. University of Lausanne, Lausanne. 139–154Google Scholar
  156. Tong, J., Zakharov, Y. D., Orchard, M. J., et al., 2004. Proposal of Chaohu Section as the GSSP Candidate of the I/O Boundary. Albertiana, 29: 13–28Google Scholar
  157. Tong, J., Zakharov, Y. D., Yu, J., 2006. Some Additional Data to the Lower Triassic of the West Pingdingshan Section in Chaohu. Albertiana, 34: 52–59Google Scholar
  158. Tong, J. N., Zhao, L. S., 2011. Lower Triassic and Induan–Olenekian Boundary in Chaohu, Anhui Province, South China. Acta Geologica Sinica: English Edition, 85(2): 399–407.  https://doi.org/10.1111/j.1755-6724.2011.00408.x CrossRefGoogle Scholar
  159. Tripathi, A., 1996. Palynostratigraphic Zonation of Upper Permian Coal Measures on Peninsular India. In: Guha, P. K. S., Sengupta, S., Ayyasami, K., et al., eds., Proceedings of 9th International Gondwana Symposium, Hyderabad. 231–249Google Scholar
  160. Tripathi, A., Vijaya, Raychowdhuri, A. K., 2005. Triassic Palynoflora from the Mahuli–Mahersop Area, Singrauli Coal–Field (Southern Extension), Sarguja District, Chhattisgarh, India. Journal of the Palaeontological Society of India, 50: 77–99Google Scholar
  161. Utting, J., 1994. Palynostratigraphy of Permian and Lower Triassic Rocks, Sverdrup Basin, Canadian Arctic Archipelago. Geological Survey of Canada, Ottawa. 107Google Scholar
  162. Utting, J., MacNaughton, R. B., Zonneveld, J. P., et al., 2005. Palynostratigraphy, Lithostratigraphy and Thermal Maturity of the Lower Triassic Toad and Grayling, and Montney Formations of Western Canada, and Comparisons with Coeval Rocks of the Sverdrup Basin, Nunavut. Bulletin of Canadian Petroleum Geology, 53(1): 5–24. https://doi.org/10.2113/53.1.5 CrossRefGoogle Scholar
  163. Utting, J., Piasecki, S., 1995. Palynology of the Permian of Northern Continents: A review. In: Scholle, P. A., Peryt, T. M., Ulmer–Scholle, D. S., eds., The Permian of Northern Pangea. Springer–Verlag, Berlin, Heidelberg. 236–261.  https://doi.org/10.1007/978-3-642-78593-1_15 CrossRefGoogle Scholar
  164. Van der Eem, J. G. L. A., 1983. Aspects of Middle and Late Triassic Palynology. 6. Palynological Investigations in the Ladinian and Lower Karnian of the Western Dolomites, Italy. Review of Palaeobotany and Palynology, 39(3/4): 189–300.  https://doi.org/10.1016/0034-6667(83)90016-7 Google Scholar
  165. Vigran, J. O., Mangerud, G., Mørk, A., et al., 1998. Biostratigraphy and Sequence Stratigraphy of the Lower and Middle Triassic Deposits from the Svalis Dome, Central Barents Sea, Norway. Palynology, 22(1): 89–141. https://doi.org/10.1080/01916122.1998.9989505 CrossRefGoogle Scholar
  166. Vigran, J. O., Mangerud, G., Mørk, A., et al., 2014. Palynology and Geology of the Triassic Succession of Svalbard and the Barents Sea, Geological Survey of Norway Special Publication. Geological Survey of Norway, Norway. 270Google Scholar
  167. Vijaya, Tiwari, R. S., 1987. Role of Spore–Pollen Species in Demarcating the Permo–Triassic Boundary in Raniganj Coalfield, West Bengal. The Palaeobotanist, 35: 242–248Google Scholar
  168. Vijaya, Tripathi, A., Roy, A., et al., 2012. Palynostratigraphy and Age Correlation of Subsurface Strata within the Sub–Basins in Singrauli Gondwana Basin, India. Journal of Earth System Science, 121(4): 1071–1092.  https://doi.org/10.1007/s12040-012-0213-7 CrossRefGoogle Scholar
  169. Visscher, H., 1971. The Permian and Triassic of the Kingscourt Outlier: A Palynological Investigation Related to Regional Stratigraphical Problems in the Permian and Triassic of Western Europe. Geological Survey of Ireland, Special Paper, 1: 1–114Google Scholar
  170. Visscher, H., Brinkhuis, H., Dilcher, D. L., et al., 1996. The Terminal Paleozoic Fungal Event: Evidence of Terrestrial Ecosystem Destabilization and Collapse. Proceedings of the National Academy of Sciences, 93(5): 2155–2158. https://doi.org/10.1073/pnas.93.5.2155 CrossRefGoogle Scholar
  171. Visscher, H., Brugman, W. A., 1981. Ranges of Selected Palynomorphs in the Alpine Triassic of Europe. Review of Palaeobotany and Palynology, 34(1): 115–128.  https://doi.org/10.1016/0034-6667(81)90069-5 CrossRefGoogle Scholar
  172. Visscher, H., Sephton, M. A., Looy, C. V., 2011. Fungal Virulence at the Time of the End–Permian Biosphere Crisis?. Geology, 39(9): 883–886. https://doi.org/10.1130/g32178.1 CrossRefGoogle Scholar
  173. Wang, J., Pfefferkorn, H. W., Xu, A., et al., 2005. A Note on Permian Plant Macrofossil Biostratigraphy of China. In: Lucas, S. G., Zeigler, K. E., eds., The Nonmarine Permian. New Mexico Museum of Natural History and Science Bulletin, 30: 352–355Google Scholar
  174. Wardlaw, B. R., Pogue, K. R., 1995. The Permian of Pakistan. In: Scholle, P. A., Peryt, T. M., Ulmer–Scholle, D. S., eds., The Permian of Northern Pangea, Volume 2: Sedimentary Basins and Economic Resources. Springer–Verlag, Berlin, Heidelberg. 215–224CrossRefGoogle Scholar
  175. Ware, D., Bucher, H., Goudemand, N., et al., 2010. Nammal Nala (Salt Range, Pakistan), a Potential GSSP Candidate for the Induan/ Olenekian Boundary (Early Triassic): Detailed Biostratigraphy and Comparison with Other GSSP Candidates. In: Abstract Volume, 9th Swiss Geoscience Meeting, Zurich. 320Google Scholar
  176. Wescott, W. A., Diggens, J. N., 1997. Depositional History and Stratigraphical Evolution of the Sakoa Group (Lower Karoo Supergroup) in the Southern Morondava Basin, Madagascar. Journal of African Earth Sciences, 24(4): 585–601.  https://doi.org/10.1016/s0899-5362(97)00082-1 CrossRefGoogle Scholar
  177. Wescott, W. A., Diggens, J. N., 1998. Depositional History and Stratigraphical Evolution of the Sakamena Group (Middle Karoo Supergroup) in the Southern Morondava Basin, Madagascar. Journal of African Earth Sciences, 27(3/4): 461–479.  https://doi.org/10.1016/s0899-5362(98)00073-6 CrossRefGoogle Scholar
  178. Wierer, J. F., 1997. Vergleichende Untersuchungen an Megasporenvergesellschaftungen der Alpinen und Germanischen Mittel–und Obertrias. Münchner Geowissenschaftliche Abhandlungen, 35: 1–175Google Scholar
  179. Wignall, P. B., Védrine, S., Bond, D. P. G., et al., 2009. Facies Analysis and Sea–Level Change at the Guadalupian–Lopingian Global Stratotype (Laibin, South China), and its Bearing on the End–Guadalupian Mass Extinction. Journal of the Geological Society, 166(4): 655–666.  https://doi.org/10.1144/0016-76492008-118 CrossRefGoogle Scholar
  180. Wright, R. P., Askin, R. A., 1987. The Permian–Triassic Boundary in the Southern Morondava Basin of Madagascar as Defined by Plant Microfossils. In: McKenzie, G. D., ed., Gondwana Six: Stratigraphy, Sedimentology, and Paleontology. American Geophysical Union, Washington, D.C. 157–166Google Scholar
  181. Xiong, C. H., Wang, Q., 2011. Permian–Triassic Land–Plant Diversity in South China: Was there a Mass Extinction at the Permian/Triassic Boundary?. Paleobiology, 37(1): 157–167. https://doi.org/10.1666/09029.1 CrossRefGoogle Scholar
  182. Yaroshenko, O. P., 1980. Triassic Miospore Assemblages from the Western Caucasus. Proceedings of the Fourth International Palynological Conference, Lucknow (1976–77). 2: 254–260Google Scholar
  183. Yaroshenko, O. P., Lozovsky, V. R., 2004. Palynological Assemblages of Continental Lower Triassic in Eastern Europe and Their Interregional Correlation. Paper 1: Palynological Assemblages of the Induan Stage. Stratigraphy and Geological Correlation, 12(3): 275–285Google Scholar
  184. Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian–Triassic Boundary. Episodes, 24: 102–114Google Scholar
  185. Yu, J. X., Broutin, J., Huang, Q. S., et al., 2010a. Annalepis, a Pioneering Lycopsid Genus in the Recovery of the Triassic Land Flora in South China. Comptes Rendus Palevol, 9(8): 479–486. https://doi.org/10.1016/j.crpv.2010.09.004 CrossRefGoogle Scholar
  186. Yu, J. X., Broutin, J., Huang, Q. S., et al., 2010b. Paleofloral Assemblage across the Permian–Triassic Boundary, Western Guizhou and Eastern Yunnan in South China. Journal of Earth Science, 21(S1): 179–182.  https://doi.org/10.1007/s12583-010-0205-y CrossRefGoogle Scholar
  187. Zakharov, Y. D., 2010. New Information on Biostratigraphy of the Mud Section, Spiti, Himalayas. Albertiana, 38: 4–7Google Scholar
  188. Zia–ul–Rehman, M., Masood, K. R., Arshad, F., et al., 2015. Biostratigraphy and Its Suggested Correlation with Lithostratigraphy, in Chhidru Formation, Salt Range, Pakistan. International Journal of Applied Agricultural Sciences, 7(1): 37–42Google Scholar
  189. Zhang, W., Chen, P., Palmer, A. R., 2003. Biostratigraphy of China. Science Press, Beijing. 616Google Scholar
  190. Zhang, H., Feng, Z., Ramezani, J., et al., in Press. Comments on “Terrestrial Permian–Triassic Boundary in Southern China: New Stratigraphic, Structural and Palaeoenvironment Considerations” by Bourquin et al. (2018). Palaeogeography, Palaeoclimatology, Palaeoecology. https://doi.org/10.1016/j.palaeo.2018.02.019 Google Scholar
  191. Zhu, H.–C., Ouyang, S., Zhan, J.–Z., et al., 2005. Comparison of Permian Palynological Assemblages from the Junggar and Tarim Basins and Their Phytoprovincial Significance. Review of Palaeobotany and Palynology, 136(3): 181–207. https://doi.org/10.1016/j.revpalbo.2005.07.001 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Museum of Nature South TyrolBozen/BolzanoItaly
  2. 2.Paläontologisches Institut und MuseumZürichSwitzerland
  3. 3.Department für Geo- und Umweltwissenschaften, Paläontologie und GeobiologieLudwig-Maximilians-Universität and Bayerische Staatssammlung für Paläontologie und GeobiologieMünchenGermany

Personalised recommendations