Skip to main content

Western Tethyan Epeiric Ramp Setting in the Early Triassic: An Example from the Central Dinarides (Croatia)

Abstract

In the central part of the External Dinarides in Plavno, Croatia, near Knin, a remarkably thick (927.5 m) Early Triassic depositional sequence was investigated. The Plavno sequence starts in the EarlyGriesbachian and ends with a continuous transition into the Anisian strata. A complete 13C isotope curve has been achieved and combined with conodonts, bivalves and ammonoids to establish and correlate stage and substage boundaries. The δ13C curve is consistent with former studies. It displays a general increase from the Griesbachian to a prominent maximum beyond the +8‰ amplitude around the Dienerian-Smithian boundary (DSB), followed by a steep and continuous decline to low, negative values in the Smithian. Around the Smithian-Spathian boundary (SSB) a steep rise to a second maximum occurred. It is followed by a saw-tooth shaped decline in the Spathian and a similar increase to a peak at the Spathian-Anisian boundary (SAB).

Sedimentologically, the Plavno sequence is interpreted as having been deposited on an extensive epeiric ramp under long-term transgressive conditions, sharing depositional characteristics of both the epeiric platform and the carbonate ramp. The entire Plavno sequence was deposited above the storm-wave base and was storm influenced. Three informal members are differentiated: 1) the dolostone member (Early Griesbachian); 2) the siliciclastic member (red-coloured shale, siltstone, sandstone with oolitic/bioclastic grainstone intercalations), which can be further divided into lower, middle and upper intervals (Late Griesbachian, Dienerian and Smithian); and 3) the mudstone member (grey lime mudstones, marls and calcisiltites with common ammonoids and gastropods-Spathian). The Plavno sequence is compared with other western Tethyan sections. Observed differences stem from local controls on deposition in the overall shallow marine environment.

This is a preview of subscription content, access via your institution.

References Cited

  • Aigner, T., 1985. Storm Depositional Systems: Dynamic Stratigraphy in Modern and Ancient Shallow–Marine Sequences. Lecture Notes in Earth Sci., 3, Springer–Verlag, New York. 173

    Google Scholar 

  • Algeo, T. J., Twitchett, R. J., 2010. Anomalous Early Triassic Sediment Fluxes due to Elevated Weathering Rates and Their Biological Consequences. Geology, 38(11): 1023–1026. https://doi.org/10.1130/g31203.1

    Article  Google Scholar 

  • Aljinović, D., 1991. Petrographic and Sedimentologic Characteristics of the Early Triassic Deposits in the Plavno and Strmica: [Dissertation]. University of Zagreb, Zagreb. 92

    Google Scholar 

  • Aljinović, D., 1995. Storm Influenced Shelf Sedimentation––An Example from the Lower Triassic (Scythian) Siliciclastic and Carbonate Succession near Knin (Southern Croatia and Western Bosnia and Herzegovina). Geologia Croatica, 48: 17–32

    Google Scholar 

  • Aljinović, D., 1997. Facijesi Klasicnih Sedimenata Mladeg Paleozoika i Starijeg Trijasa Gorskog Kotara (Late Palaeozoic and Early Scythian Clastic Facies in Gorski Kotar, Croatia): [Dissertation]. University of Zagreb, Zagreb. 163

    Google Scholar 

  • Aljinović, D., Kolar–Jurkovšek, T., Jurkovšek, B., 2005. Litofaciesna in Konodontna Conacija Spodnjetriasnih Plasti Severozahodnega Dela Zunanjih Dinaridov (Gorkski Kotar, Hrvaška). RMZ–Materials and geoenvironment RMZ–materiali in geookolje, 52: 581–596

    Google Scholar 

  • Aljinović, D., Kolar–Jurkovšek, T., Jurkovšek, B., 2006. The Lower Triassic Shallow Marine Succession in Gorski Kotar Region (External Dinarides, Croatia): Lithofacies and Conodont Dating. Rivista Italiana di Paleontologia e Stratigrafia, 112: 35–53

    Google Scholar 

  • Aljinović, D., Kolar–Jurkovšek, T., Jurkovšek, B., et al., 2011. Conodont Dating of the Lower Triassic Sedimentary Rocks in the External Dinarides (Croatia and Bosnia and Herzegovina). Rivista Italiana di Paleontologia e Stratigrafia, 117: 135–148

    Google Scholar 

  • Assereto, R., Bosellini, A., Fantini Sestini, N., et al., 1973. The Permian–Triassic Boundary in the Southern Alps (Italy). In: Logan, A., Hills, L. V., eds., The Permian and Triassic Systems and Their Mutual Boundary. Canadian Soc. Petroleum Geol. Mem., 2: 176–199

    Google Scholar 

  • Babic, L. J., 1968. O Trijasu Gorskog Kotara i Susjednih Podrucja (Sur le Trias Dans le Gorski Kotar et les Regions Voisines). Geol. Vjesnik, 22: 11–23

    Google Scholar 

  • Bauer, F. K., Cerny, I., Exner, C., et al., 1983. Erlauterungen zur Geologischen Karte der Karawanken 1: 25000. Geologische Bundesanstalt Wien, Ostteil. 86

    Google Scholar 

  • Bosellini, A., 1964. Stratigrafia, Petrografia e Sedimentologia Delle Facies Carbonatiche al Limite Permiano–Trias Nelle Dolomiti Occidentali. Mem. Mus. St. Nat. Ven. Trid., 15: 59–110

    Google Scholar 

  • Bosellini, A., 1968. Paleogeologia Pre–Anisica Delle Dolomiti Centrosettentrionali. Atti Accademia Nazionale dei Lincei. Memorie della Classe di Scienza Fisiche Matematiche e Maturali, 9(8): 1–33

    Google Scholar 

  • Brandner, R., Horacek, M., Keim, L., et al., 2009. The Pufels/Bulla Road Section: Deciphering Environmental Changes across the Permian–Triassic Boundary to the Olenekian by Integrated Litho–, Magnetoand Isotope Stratigraphy: A Field Trip Guide. Geo. Alp., 6: 116–132

    Google Scholar 

  • Brandner, R., Horacek, M., Keim, L., 2012. Permian–Triassic–Boundary and Lower Triassic in the Dolomites, Southern Alps (Italy). Field Trip Guide 29th IAS Meeting of Sedimentology Schladming/Austria. Journal of Alpine Geology, 54: 379–404

    Google Scholar 

  • Broglio Loriga, C., Masetti, D., Neri, C., 1983. La formazione di Werfen (Scitico) Delle Dolomiti Occidental: Sedimentologia e Biostratigrafia. Riv. Ital. Paleont. Strat., 88: 501–598

    Google Scholar 

  • Broglio Loriga, C., Neri, C., Posenato, R., 1986. The Lower Triassic of the Dolomites and Cadore. In: Italian IGCP 203 Group, Permian and Permian–Triassic Boundary in the South–Alpine Segment of the Western Tethys: Field–Guide Book. Soc. Geol. It. and IGCP 203 Meeting, July 4–12, 1986, Brescia. 29–34

    Google Scholar 

  • Broglio Loriga, C., Góczán, F., Haas, J., et al., 1990. The Lower Triassic Sequence of the Dolomites (Italy) and Transdanubian Mid–Mountains (Hungary) and Their Correlation. Memorie di Scienze Geologiche, 42: 41–103

    Google Scholar 

  • Burchette, T. P., Wright, V. P., 1992. Carbonate Ramp Depositional Systems. Sedimentary Geology, 79(1/2/3/4): 3–57. https://doi.org/10.1016/0037-0738(92)90003-a

    Article  Google Scholar 

  • Chen, Y. L., Kolar–Jurkovšek, T., Jurkovšek, B., et al., 2016. Early Triassic Conodonts and Carbonate Carbon Isotope Record of the Idrija–Žiri Area, Slovenia. Palaeogeography, Palaeoclimatology, Palaeoecology, 444: 84–100. https://doi.org/10.1016/j.palaeo.2015.12.013

    Article  Google Scholar 

  • Chorowitz, J., 1977. Etude Geologique des Dinarides le Long de la Structure Transverale Split–Karlovac (Yugoslavie). Societé Gêologique du Nord, 1: 3–331

    Google Scholar 

  • Clarkson, M. O., Richoz, S., Wood, R. A., et al., 2013. A New High–Resolution d13C Record for the Early Triassic: Insights from the Arabian Platform. Gondwana Research, 24(1): 233–242. https://doi.org/10.1016/j.gr.2012.10.002

    Article  Google Scholar 

  • De Zanche, V., Farabegoli, E., Mietto, P., et al., 1980. Le Unità Litostratigrafiche al Limite Scitico–Anisico nel Recoarese (Prealpi Vicente). Mem. Sci. Geol., 34: 195–204

    Google Scholar 

  • De Zanche, V., Gianolla, P., Mietto, P., et al., 1993. Triassic Sequence Stratigraphy in the Dolomites (Italy). Mem. Sci. Geol., 45: 1–27

    Google Scholar 

  • Duke, W. L., 1990. Geostrophic Circulation or Shallow Marine Turbidity Currents? the Dilemma of Paleoflow Patterns in Strom–Influenced Prograding Shoreline Systems. Journal of Sedimentary Research, 60(6): 870–883. https://doi.org/10.1306/d4267636-2b26-11d7-8648000102c1865d

    Article  Google Scholar 

  • Ðurdanovic, Ž., 1967. The Lower Triassic of the Gorski Kotar Region. Geol. Vjesnik, 20: 107–110

    Google Scholar 

  • Farabegoli, E., Perri, M. C., 1998. Permian/Triassic Boundary and Early Triassic of the Bulla Section (Southern Alps, Italy): Lithostratigraphy, Facies and Conodont Biostratigraphy. In: Perri, M. C., Spalletta, C., eds., Southern Alps Field Trip Guidebook. ECOS VII. Giornale di Geologia (Spec. Issue), 60: 292–310

    Google Scholar 

  • Flügel, E., 1982. Evolution of Triassic Reefs: Current Concepts and Problems. Facies, 6(1): 297–327. https://doi.org/10.1007/bf02536687

    Article  Google Scholar 

  • Goldring, R., Bridges, P., 1973. Sublitoral Sand Sheets. Jour. Sed. Petrology, 43: 736–747

    Google Scholar 

  • Golubic, V., 2000. Biostratigraphic Distribution of Upper Scythian Ammonites in the Reference Area of Muc Gornji Village, Croatia. Natura Croatica, 9: 237–274

    Google Scholar 

  • Grasby, S. E., Beauchamp, B., Embry, A., et al., 2012. Recurrent Early Triassic Ocean Anoxia. Geology, 41(2): 175–178. https://doi.org/10.1130/g33599.1

    Article  Google Scholar 

  • Grimani, I., Šikic, K., Šimunic, A., 1972. Osnovna Geološka Karta SFRJ, 1: 100 000, List Knin. (Basic Geologic Map SFRJ). Institut za Geološka Istraživanja Zagreb, Savezni Geol. Zavod Beograd.

    Google Scholar 

  • Grimani, I., Šikic, K., Šimunic, A., 1975. Osnovna Geološka Karta SFRJ, 1: 100 000, Tumac za List Knin (Basic Geologic Map SFRJ Explanatory Notes to Geological Map––Knin; Abs: Geology of the Knin Sheet). Institut za Geološka Istraživanja Zagreb, Savezni Geol. Zavod Beograd. 61

    Google Scholar 

  • Gwinner, M. P., 1971. Geologie der Alpen––Stratigraphie, Pläogeographie, Tektonik. Schweizerbartsche Verlagsbuchhandlung, Stuttgart. 477

    Google Scholar 

  • Haas, J., Kovács, S., Krystyn, L., et al., 1995. Significance of Late Permian–Triassic Facies Zones in Terrane Reconstructions in the Alpine–North Pannonian Domain. Tectonophysics, 242(1/2): 19–40. https://doi.org/10.1016/0040-1951(94)00157-5

    Article  Google Scholar 

  • Haas, J., Hips, K., Pelikán, P., et al., 2004. Facies Analysis of Marine Permian/Triassic Boundary Sections in Hungary. Acta Geologica Hungarica, 47(4): 297–340. https://doi.org/10.1556/ageol.47.2004.4.1

    Article  Google Scholar 

  • Haas, J., Demény, A., Hips, K., et al., 2007. Biotic and Environmental Changes in the Permian–Triassic Boundary Interval Recorded on a Western Tethyan Ramp in the Bükk Mountains, Hungary. Global and Planetary Change, 55(1/2/3): 136–154. https://doi.org/10.1016/j.gloplacha.2006.06.010

    Article  Google Scholar 

  • Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of Fluctuating Sea Levels since the Triassic. Science, 235(4793): 1156–1167. https://doi.org/10.1126/science.235.4793.1156

    Article  Google Scholar 

  • Heckel, P. H., 1974. Carbonate Buildups in the Geological Record: A Review. In: Laporte, L. F., ed., Reef in Time and Space. Soc. Econ. Paleontol. Mineral. (Spec. Publ.), 18: 90–154

    Google Scholar 

  • Herak, M., 1973. Some Teclonical Problems of the Evaporitic Area in the Dinarides of Croatia. Geol. Vjesnik, 26: 29–40

    Google Scholar 

  • Herak, M. 1986. A New Concept of Geotectonics of the Dinarides. Acta Geologica, 16(1): 1–42

    Google Scholar 

  • Herak, M., Šcavnicar, B., Šušnjara, A., et al., 1983. Neue Beiträge zur Biostratigraphie der Tethys–Trias. Lower Triassic of Muc. Proposal for standard section of the European Upper Scythian. Schr. Erdwiss., 5, 93–106.

    Google Scholar 

  • Hine, C. A., 1977. Lily Bank, Bahamas: History of an Active Oolite Sand Shoal. SEPM Journal of Sedimentary Research, 47: 1554–1583.

    Google Scholar 

  • Hips, K., Pálikán, P., 2002. Lower Triassic Shallow Marine Succession in the Bükk Mountains, NE Hungary. Geol. Carpathica, 53(6): 351–367

    Google Scholar 

  • Hochuli, P. A., 2016. Interpretation of “Fungal Spikes” in Permian–Triassic Boundary Sections. Global and Planetary Change, 144: 48–50. https://doi.org/10.1016/j.gloplacha.2016.05.002

    Article  Google Scholar 

  • Horacek, M., Brandner, R., Abart, R., 2007a. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps: Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1/2): 347–354. https://doi.org/10.1016/j.palaeo.2006.11.049

    Article  Google Scholar 

  • Horacek, M., Richoz, S., Brandner, R., et al., 2007b. Evidence for Recurrent Changes in Lower Triassic Oceanic Circulation of the Tethys: The d13C Record from Marine Sections in Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1/2): 355–369. https://doi.org/10.1016/j.palaeo.2006.11.052

    Article  Google Scholar 

  • Horacek, M., Koike, T., Richoz, S., 2009. Lower Triassic d13C Isotope Curve from Shallow–Marine Carbonates in Japan, Panthalassa Realm: Confirmation of the Tethys d13C Curve. Journal of Asian Earth Sciences, 36(6): 481–490. https://doi.org/10.1016/j.jseaes.2008.05.005

    Article  Google Scholar 

  • Horacek, M., Povoden, E., Richoz, S., et al., 2010. High–Resolution Carbon Isotope Changes, Litho–and Magnetostratigraphy across Permian–Triassic Boundary Sections in the Dolomites, N–Italy. New Constraints for Global Correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1/2/3/4): 58–64. https://doi.org/10.1016/j.palaeo.2010.01.007

    Article  Google Scholar 

  • Horacek, M., Krystyn, L., Brandner, R., 2015. Significance of Platyvilosus Costatus and Foliella Gardenae as Indicators for the Dienerian–Smithian and Smithian–Spathian Boundaries, Respectively: A Study in the Dolomites (N–Italy). EGU General Assembly 2015, April 12–17, 2015, in Vienna, Austria. Geophysical Research Abstracts, 17: EGU2015–14921

    Google Scholar 

  • Irwin, M. L., 1965. General Theory of Epeiric Clear Water Sedimentation. AAPG Bulletin, 49: 445–459

    Google Scholar 

  • Ivanovic, A., Šcavnicar, B., Sakac, K., et al., 1971. Stratigrafski Položaj i Petrografske Karakteristike Evaporita i klastita Okolice Drniša i Vrlike u Dalmaciji (Stratigraphic Possition and Petrographical Characteristics of the Evaporite and Clastic Deposits in the Environs of Drniš and Vrlika (Dalmatia)). Geol. Vjesnik, 24: 11–33

    Google Scholar 

  • Ivanovic, A., Sikirica, V., Sakac, K., 1978. Osnovna Geološka Karta 1: 100 000, Tumac za List Drniš K33–9 (Explanatory Notes to Geological Map–Drniš). Institut za Geološka Istraživanja Zagreb, Savezni Geol. Zavod Beograd

    Google Scholar 

  • James, N. P., 1984. Reefs. In: Walker, R. G., ed., Facies Models. Geosci. Canad. Repr. Ser., 1: 229–244

    Google Scholar 

  • Jelaska, V., Kolar–Jurkovšek, T., Jurkovšek, B., et al., 2003. Triassic Beds in the Basement of the Adriatic–Dinaric Carbonate Platform of the Svilaja Mt. (Croatia). Geologija, 46(2): 225–230. https://doi.org/10.5474/geologija.2003.019

    Article  Google Scholar 

  • Johnson, H. D., Baldwin, C. T., 1996. Shallow Clastic Seas. In: Reading, H. G., ed., Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd Edition. Blackwell Science Ltd., Oxford. 232–281

    Google Scholar 

  • Kiessling, W., 2010. Reef Expansion during the Triassic: Spread of Photosymbiosis Balancing Climatic Cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1/2/3/4): 11–19. https://doi.org/10.1016/j.palaeo.2009.03.020

    Article  Google Scholar 

  • Kolar–Jurkovšek, T., Jurkovšek, B., 2007. First Record of Hindeodus–Isarcicella Population in Lower Triassic of Slovenia. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1/2): 72–81. https://doi.org/10.1016/j.palaeo.2006.11.036

    Article  Google Scholar 

  • Kolar–Jurkovšek, T., Jurkovšek, B., Aljinović, D., et al., 2011b. Stratigraphy of Upper Permian and Lower Triassic Strata of the Žiri Area (Slovenia). Geologija, 53(2): 193–204. https://doi.org/10.5474/geologija.2011.015

    Article  Google Scholar 

  • Kolar–Jurkovšek, T., Jurkovšek, B., 2015. Conodont Zonation of Lower Triassic Strata in Slovenia. Geologija, 58(2): 155–174. https://doi.org/10.5474/geologija.2015.012

    Article  Google Scholar 

  • Kolar–Jurkovšek, T., Jurkovšek, B., 2016. Conodont Zonation for the Lower Triassic of Western Tethys––A Case Study from Slovenia. The 5th International Geological Congress, August 27–September 4, 2016, Cape Town

    Google Scholar 

  • South Africa Kovács, S., Sudar, M., Karamata, S., et al., 2010. Triassic Environments in the Circum–Pannonian Region Related to the Initial Neotethyan Rifting Stage. In: Vozar, J., Ebner, F., Vozárova, A., et al., eds., Variscan and Alpine Terranes of the Circum–Pannonian Region. Slovak Academy of Sciences, Geological Institute, Bratislava. 87–156

    Google Scholar 

  • Kreisa, R. D., 1981. Storm–Generated Sedimentary Structures in Subtidal Marine Facies with Examples from the Middle and Upper Ordovician of Southwestern Virginia. SEPM Journal of Sedimentary Research, 51: 832–849

    Google Scholar 

  • Krainer, K., 1993. The Alpine Buntsandstein Formation of the Drau Range (Eastern Alps, Austria): Transition from Fluvial to Shallow Marine Facies. In: Lucas, S. G., Morales, M., eds., The Nonmarine Triassic. New Mexico Museum of Natural History and Science Bull., 3: 267–275

    Google Scholar 

  • Krystyn, L., 1974. Die Tirolites–Fauna (Ammonoidea) der Untertriassischen Werfen Schichten Europas und Iher Stratigraphische Bedeutung. Sitzberg. Oster. Akad. Wiss. Matem.–Naturw. Kl. Abt., 193(1/2/3): 29–50

    Google Scholar 

  • Krystyn, L., Balini, M., Nicora, A., 2004. Lower and Middle Triassic Stage Boundaries in Spiti. Albertiana, 30: 39–53

    Google Scholar 

  • Krystyn, L., Ðakovic, M., Horacek, M., et al., 2014. Pelagically Influenced Late Permian and Early Triassic Deposits in Montenegro: Remnant of Internal Dinarid Neotethys or Paleotethys Relict? Bericht des Institutes für Erdwissenschaften der Universität Graz, 20(1): 114

    Google Scholar 

  • Krystyn, L., Horacek, M., Brandner, R., et al., 2015. Carbon Isotopy as Major Chronostratigraphic Correlation Tool: The Early Triassic Case. Bericht des Institutes für Erdwissenschaften der Universität Graz, 21: 212

    Google Scholar 

  • Lukasik, J. J., James, N. P., McGowran, B., et al., 2000. An Epeiric Ramp: Low–Energy, Cool–Water Carbonate Facies in a Tertiary Inland Sea, Murray Basin, South Australia. Sedimentology, 47(4): 851–881

    Article  Google Scholar 

  • Mostler, H., Rossner, R., 1984. Mikrofazies ünd Palökologie Der Höheren Werfener Schichten (Untertrias) der Nördlichen Kalkalpen. Facies, 10(1): 87–143. https://doi.org/10.1007/bf02536689

    Article  Google Scholar 

  • Nestell, G. P., Sudar, M. N., Jovanovic, D., et al., 2009. Latest Permian Foraminifers from the Vlašic Mountain Area, Northwestern Serbia. Micropaleontology, 55: 495–513

    Google Scholar 

  • Nestell, G. P., Kolar–Jurkovšek, T., Jurkovšek, B., et al., 2011. Foraminifera from the Permian–Triassic Transition in Western Slovenia. Micropaleontology, 57: 197–222

    Google Scholar 

  • Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End–Permian Extinction. Science, 305(5683): 506–509. https://doi.org/10.1126/science.1097023

    Article  Google Scholar 

  • Payne, J. L., Lehrmann, D. J., Wei, J., et al., 2006. The Pattern and Timing of Biotic Recovery from the End–Permian Extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21(1): 63–85. https://doi.org/10.2110/palo.2005.p05-12p

    Article  Google Scholar 

  • Perri, M. C., 1991. Conodont Biostratigraphy of the Werfen Formation (Lower Triassic), Southern Alps, Italy. Boll. Soc. Paleont. Ital., 30(1): 23–46

    Google Scholar 

  • Perri, M. C., Andraghetti, M., 1987. Permian–Triassic Boundary and Early Triassic Conodonts from the Southern Alps, Italy. Riv. It. Paleont. Strat., 93: 291–328

    Google Scholar 

  • Perri, M. C., Farabegoli, E., 2003. Conodonts across the Permian–Triassic Boundary in the Southern Alps. Courier Forschungsinstitut Senckenberg, 245: 281–313

    Google Scholar 

  • Posenato, R., 2008. Patterns of Bivalve Biodiversity from Early to Middle Triassic in the Southern Alps (Italy): Regional vs. Global Events. Palaeogeography, Palaeoclimatology, Palaeoecology, 261(1/2): 145–159. https://doi.org/10.1016/j.palaeo.2008.01.006

    Article  Google Scholar 

  • Pratt, B. R., James, N. P., 1986. The St George Group (Lower Ordovician) of Western Newfoundland: Tidal Flat Island Model for Carbonate Sedimentation in Shallow Epeiric Seas. Sedimentology, 33(3): 313–343. https://doi.org/10.1111/j.1365-3091.1986.tb00540.x

    Article  Google Scholar 

  • Read, J. F., 1998. Phanerozoic Carbonate Ramps from Greenhouse, Transitional and Ice–House Worlds: Clues from Field and Modelling Studies. Geological Society, London, Special Publications, 149(1): 107–135. https://doi.org/10.1144/gsl.sp.1999.149.01.07

    Article  Google Scholar 

  • Read, J. F., Husinec, A., Cangialosi, M., et al., 2016. Climate Controlled, Fabric Destructive, Reflux Dolomitization and Stabilization Via Marine–and Synorogenic Mixed Fluids: An Example from a Large Mesozoic, Calcite–Sea Platform, Croatia. Palaeogeography, Palaeoclimatology, Palaeoecology, 449: 108–126. https://doi.org/10.13039/100000001

    Article  Google Scholar 

  • Reineck, H. E., Singh, I. B., 1972. Genesis of Laminated Sand and Graded Rhythmites in Storm–Sand Layers of Shelf Mud. Sedimentology, 18(1/2): 123–128. https://doi.org/10.1111/j.1365-3091.1972.tb00007.x

    Article  Google Scholar 

  • Retallack, G. J., 1995. Permian–Triassic Life Crisis on Land. Science, 267(5194): 77–80. https://doi.org/10.1126/science.267.5194.77

    Article  Google Scholar 

  • Retallack, G. J., 2005. Earliest Triassic Claystone Breccias and Soil–Erosion Crisis. Journal of Sedimentary Research, 75(4): 679–695. https://doi.org/10.2110/jsr.2005.055

    Article  Google Scholar 

  • Richoz, S., 2006. Stratigraphie et Variations Isotopiques du Carbone Dans le Permien Supérieur et le Trias Inferieur de Quelques Localités de la Néotéthys (Turquie, Oman et Iran). Mémoire de Géologie de Lausanne, 46: 275

    Google Scholar 

  • Von Richthofen, F., 1860. Geognostische Beschreibung der Umgegend von Pedrazzo, St. Cassian und der Seiser Alpe in Südtirol, Gotha. 372

    Google Scholar 

  • Romano, C., Goudemand, N., Vennemann, T. W., et al., 2013. Climatic and Biotic Upheavals Following the End–Permian Mass Extinction. Nature Geoscience, 6(1): 57–60. https://doi.org/10.1038/ngeo1667

    Article  Google Scholar 

  • Rüffer, T., Zühlke, R. 1995. Sequence Stratigraphy and Sea–Level Changes in the Early to Middle Triassic of the Alps: A Global Comparison. In: Haq, B. U., ed., Sequence Stratigraphy and Depositional Response to Eustatic, Tectonic and Climatic Foreing. Kluwer, Dordrecht. 161–207

    Chapter  Google Scholar 

  • Scotese, C. R., 2001. Atlas of Earth History. Palaeogeography, PalaeoMap Project, Arlington. 52

    Google Scholar 

  • Song, H. J., Tong, J. N., Xiong, Y. L., et al., 2012. The Large Increase of d13C Carb–Depth Gradient and the End–Permian Mass Extinction. Science China Earth Sciences, 55(7): 1101–1109. https://doi.org/10.1007/s11430-012-4416-1

    Article  Google Scholar 

  • Stampfli, G. M., Borel, G., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 196(1/2): 17–33. https://doi.org/10.1016/s0012-821x(01)00588-x

    Article  Google Scholar 

  • Stampfli, G. M., Hochard, C., Vérard, C., et al., 2013. The Formation of Pangea. Tectonophysics, 593: 1–19. https://doi.org/10.1016/j.tecto.2013.02.037

    Article  Google Scholar 

  • Sudar, M., Jovanovic, D., Kolar–Jurkovšek, T., 2007. Late Permian Conodonts from Jadar Block (Vardar Zone, Northwestern Serbia). Geologica Carpathica, 58: 145–152

    Google Scholar 

  • Sudar, M. N., Chen, Y. L., Kolar–Jurkovšek, T., et al., 2014. Lower Triassic (Olenekian) Microfauna from Jadar Block (Gucevo Mt., Nw Serbia). Annales Geologiques de la Peninsule Balkanique, 75: 1–15. https://doi.org/10.2298/gabp1475001s

    Article  Google Scholar 

  • Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338: 366–370

    Article  Google Scholar 

  • Sun, Y. D., Wignall, P. B., Joachimski, M. M., et al., 2015. High Amplitude Redox Changes in the Late Early Triassic of South China and the Smithian–Spathian Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 427: 62–78. https://doi.org/10.13039/100007834

    Article  Google Scholar 

  • Šcavnicar, B., 1973. Casts of Salt Crystals in Clastic Rocks in the Environs of Vrlika and Knin (Dalmatia). Geol. Vjesnik, 26: 155–157

    Google Scholar 

  • Šcavnicar, B., Šušnjara, A., 1983. The Geologic Column of the Lower Triassic at Muc (Southern Croatia). Acta Geologica, 13: 1–25

    Google Scholar 

  • Tišljar, J., 1992. Origin and Depositional Environments of the Cvaporite and Carbonate Complex (Upper Permian) from the Central Part of the Dinarides (Southern Croatia and Western Bosnia). Geol. Croatica, 45: 115–127

    Google Scholar 

  • Tollmann, A., 1976. Analyse des Klassischen Nordalpinen Mesozoikums. Monographie der Nördlichen Kalkalpen. Teil 2. Deuticke, Wien

    Google Scholar 

  • Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology. Blackwell Science Lit., Oxford. 482

    Book  Google Scholar 

  • Twitchett, R. J., 2006. The Palaeoclimatology, Palaeoecology and Palaeoenvironmental Analysis of Mass Extinction Events. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2/3/4): 190–213. https://doi.org/10.1016/j.palaeo.2005.05.019

    Article  Google Scholar 

  • Vlahovic, I., Tišljar, J., Velic, I., et al., 2005. Evolution of the Adriatic Carbonate Platform: Palaeogeography, Main Events and Depositional Dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3/4): 333–360. https://doi.org/10.1016/j.palaeo.2005.01.011

    Article  Google Scholar 

  • Whiteker, J. H., McD., 1973. “Gutter Cast”, a New Name for Scour–and–Fill Structures: With Examples from the Llandoverian of Ringerike and Malmoya, Southern Norway. Norsk Geologisk Tidsskrifl, 53: 403–417

    Google Scholar 

  • Wissman, H. L., Munster, G. V., 1841. Beitrage zur Geognosie und Petrefacten–Kundes des Sudestlich Tirol’s Vorzuglich der Schichten von St. Cassian. Beiträge zur Petrefactenkunde, 4: 1–152

    Google Scholar 

  • Wright, V. P., Faulkner, T. J., 2010. Sediment Dynamics of Early Carboniferous Ramps: A Proposal. Geological Journal, 25(2): 139–144. https://doi.org/10.1002/gj.3350250205

    Article  Google Scholar 

Download references

Acknowledgments

The field data were obtained during 2012. The investigation was part of the Austrian-Croatian Bilateral Project (No. 2014-15) supported by OeAD; the Austrian Agency for International Mobility and Cooperation in Education; and the Croatian Ministry of Science, Education and Sport. This research was partly supported by the Slovenian Research Agency (No. P1-0011). The facilities of the Geological Survey of Slovenia are acknowledged. This article is a contribution to IGCP 572 and IGCP 630. We would like to thank F Read and Y D Sun for their constructive comments which significantly helped to improve this contribution. We are especially grateful to Miss Lauren Chen for her help in language editing. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0787-3..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duje Smirčić.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aljinović, D., Horacek, M., Krystyn, L. et al. Western Tethyan Epeiric Ramp Setting in the Early Triassic: An Example from the Central Dinarides (Croatia). J. Earth Sci. 29, 806–823 (2018). https://doi.org/10.1007/s12583-018-0787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0787-3

Key words

  • Early Triassic
  • Dinarides
  • epeiricramp
  • δ13C isotope curve
  • litho- and biostratigraphy