Advertisement

Journal of Earth Science

, Volume 29, Issue 2, pp 255–264 | Cite as

Crustal Accretion and Reworking within the Khanka Massif: Evidence from Hf Isotopes of Zircons in Phanerozoic Granitoids

  • Xiaoming Zhang
  • Wenliang Xu
  • Chenyang Sun
  • Ting Xu
  • Feng Wang
Petrology and Mineral Deposits

Abstract

This paper presents a synthesis and analysis of geochronological, geochemical, and zircon Hf isotopic data of Phanerozoic granitoids within the Khanka massif, with the aim of revealing the accretion and reworking processes of continental crust within the massif. Zircon U-Pb dating indicates that Phanerozoic granitic magmatism within the Khanka massif can be subdivided into eight stages: Late Cambrian, Middle–Late Ordovician, Middle Silurian, Late Carboniferous, Early Permian, Middle–Late Permian to Early Triassic, Late Triassic–Early Jurassic, and Early Cretaceous. The zircon Hf isotopic compositions reveal that crustal accretionary events took place mainly in the Mesoproterozoic and Neoproterozoic. Through time, the zircon εHf(t) values gradually increase, indicating that the Phanerozoic granitic magmas were derived from the melting of progressively less ancient and more juvenile crust. The zircon εHf(t) values exhibit a gradual decrease with the increases in latitude, which implies that the amounts of ancient crustal components within the lower continental crust of the Khanka massif increased from south to north. At the same latitude range, the zircon Hf isotopic compositions also display some variations. We conclude, therefore, that significant horizontal and vertical heterogeneities existed in the lower continental crust of the Khanka massif during the Phanerozoic.

Key words

Khanka massif Phanerozoic granitoid zircon Hf isotope crustal accretion and reworking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the staff of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, for their advice and assistance during U-Pb zircon dating and the staff of the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China for help in the Hf isotope analyses. This work was financially supported by the National Natural Science Foundation of China (Nos. 41772047 and 41330206), the Graduate Innovation Fund of Jilin University (No. 2017034), and the Opening Foundation of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan) (No. GPMR201503). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0950-2.

Supplementary material

12583_2017_950_MOESM1_ESM.xls (98 kb)
Supplementary material, approximately 98.5 KB.

References Cited

  1. Allègre, C. J., Rousseau, D., 1984. The Growth of the Continent through Geological Time Studied by Nd Isotope Analysis of Shales. Earth and Planetary Science Letters, 67(1): 19–34. https://doi.org/10.1016/0012-821x(84)90035-9CrossRefGoogle Scholar
  2. Armstrong, R. A., 1981. Radiogenic Isotopes: The Case for Crustal Recycling on a Near-Steady-State No-Continental-Growth Earth. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 301(1461): 443–472. https://doi.org/10.1098/rsta.1981.0122CrossRefGoogle Scholar
  3. Barnes, G. L., 2003. Origins of the Japanese Islands: The New “Big Picture”. Japan Review, 15: 3–50Google Scholar
  4. Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust: Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4): 457–466. https://doi.org/10.1016/j.lithos.2010.07.024CrossRefGoogle Scholar
  5. BGMRJ (Bureau of Geology and Mineral Resources of Jilin Province), 1997. Stratigraphy of Jilin Province. China University of Geosciences Press, Wuhan. 10–13 (in Chinese)Google Scholar
  6. Cao, H. H., Xu, W. L., Pei, F. P., et al., 2011. Permian Tectonic Evolution in Southwestern Khanka Massif: Evidence from Zircon U-Pb Chronology, Hf Isotope and Geochemistry of Gabbro and Diorite. Acta Geologica Sinica—English Edition, 85(6): 1390–1402CrossRefGoogle Scholar
  7. Cao, H. H., Xu, W. L., Pei, F. P., et al., 2013. Zircon U-Pb Geochronology and Petrogenesis of the Late Paleozoic–Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block. Lithos, 170/171: 191–207. https://doi.org/10.1016/j.lithos.2013.03.006CrossRefGoogle Scholar
  8. Cawood, P. A., Wang, Y. J., Xu, Y. J., et al., 2013. Locating South China in Rodinia and Gondwana: A Fragment of Greater India Lithosphere?. Geology, 41(8): 903–906. https://doi.org/10.1130/g34395.1CrossRefGoogle Scholar
  9. Condie, K. C., Aster, R. C., 2010. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Research, 180(3/4): 227–236. https://doi.org/10.1016/j.precamres.2010.03.008CrossRefGoogle Scholar
  10. Condie, K. C., Bickford, M. E., Aster, R. C., et al., 2011. Episodic Zircon Ages, Hf Isotopic Composition, and the Preservation Rate of Continental Crust. Geological Society of America Bulletin, 123(5/6): 951–957. https://doi.org/10.1130/b30344.1CrossRefGoogle Scholar
  11. Davies, G., Gledhill, A., Hawkesworth, C., 1985. Upper Crustal Recycling in Southern Britain: Evidence from Nd and Sr Isotopes. Earth and Planetary Science Letters, 75(1): 1–12CrossRefGoogle Scholar
  12. DePaolo, D. J., Linn, A. M., Schubert, G., 1991. The Continental Crustal Age Distribution: Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96(B2): 2071–2088. https://doi.org/10.1029/90jb02219CrossRefGoogle Scholar
  13. Dhuime, B., Hawkesworth, C. J., Cawood, P. A., et al., 2012. A Change in the Geodynamics of Continental Growth 3Billion Years Ago. Science, 335(6074): 1334–1336. https://doi.org/10.1126/science.1216066CrossRefGoogle Scholar
  14. Dhuime, B., Hawkesworth, C. J., Cawood, P. A., 2011. When Continents Formed. Science, 331(6014): 154–155. https://doi.org/10.1126/science.1201245CrossRefGoogle Scholar
  15. Dong, Y., Ge, W. C., Yang, H., et al., 2014. Geochronology and Geochemistry of Early Cretaceous Volcanic Rocks from the Baiyingaolao Formation in the Central Great Xing’an Range, NE China, and Its Tectonic Implications. Lithos, 205: 168–184. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  16. Faure, M., Natal’in, B. A., Monié, P., et al., 1995. Tectonic Evolution of the Anuy Metamorphic Rocks (Sikhote Alin, Russia) and their Place in the Mesozoic Geodynamic Framework of East Asia. Tectonophysics, 241(3/4): 279–301. https://doi.org/10.1016/0040-1951(94)00186-dCrossRefGoogle Scholar
  17. Goodwin, A. M., 1996. Principles of Precambrian Geology. Academic Press, London. 281–318Google Scholar
  18. Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9CrossRefGoogle Scholar
  19. Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. https://doi.org/10.1016/s0024-4937(02)00082-8CrossRefGoogle Scholar
  20. Guo, P., Liu, C. Y., Wang, J. Q., et al., 2017. Considerations on the Application of Detrital-Zircon Geochronology to Sedimentary Provenance Analysis. Acta Sedimentologica Sinica, 35(1): 46–55 (in Chinese with English Abstract)Google Scholar
  21. Hawkesworth, C. J., Kemp, A. I. S., 2006. The Differentiation and Rates of Generation of the Continental Crust. Chemical Geology, 226(3/4): 134–143. https://doi.org/10.1016/j.chemgeo.2005.09.017CrossRefGoogle Scholar
  22. HBGMR (Heilongjiang Bureau of Geology Mineral Resources), 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing. 1–734 (in Chinese with English Abstract)Google Scholar
  23. Hurley, P. M., Rand, J. R., 1969. Pre-Drift Continental Nuclei. Science, 164(3885): 1229–1242. https://doi.org/10.1126/science.164.3885.1229CrossRefGoogle Scholar
  24. Jacobsen, S. B., 1988. Isotopic and Chemical Constraints on Mantle-Crust Evolution. Geochimica et Cosmochimica Acta, 52(6): 1341–1350. https://doi.org/10.1016/0016-7037(88)90205-0CrossRefGoogle Scholar
  25. Jahn, B. M., Capdevila, R., Liu, D. Y., et al., 2004. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 23(5): 629–653. https://doi.org/10.1016/s1367-9120(03)00125-1CrossRefGoogle Scholar
  26. Jahn, B. M., Wu, F. Y., Chen, B., 2000a. Massive Granitoid Generation in Central Asia: Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82–92Google Scholar
  27. Jahn, B. M., Wu, F. Y., Hong, D. W., 2000b. Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1): 5–20. https://doi.org/10.1007/bf02719146CrossRefGoogle Scholar
  28. Jahn, B. M., Wu, F. Y., Chen, B., 2000c. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181–193. https://doi.org/10.1017/s0263593300007367CrossRefGoogle Scholar
  29. Jahn, B. M., Valui, G., Kruk, N., et al., 2015. Emplacement Ages, Geochemical and Sr-Nd-Hf Isotopic Characterization of Mesozoic to Early Cenozoic Granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal Growth and Regional Tectonic Evolution. Journal of Asian Earth Sciences, 111: 872–918. https://doi.org/10.1016/j.jseaes.2015.08.012CrossRefGoogle Scholar
  30. Ji, W. Q., Xu, W. L., Yang, D. B., et al., 2007. Chronology and Geochemistry of Volcanic Rocks in the Cretaceous Suifenhe Formation in Eastern Heilongjiang, China. Acta Geologica Sinica—English Edition, 81(2): 266–277CrossRefGoogle Scholar
  31. Jia, D. C., Hu, R. Z., Lu, Y., et al., 2004. Collision Belt between the Khanka Block and the North China Block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences, 23(2): 211–219CrossRefGoogle Scholar
  32. Jing, H. X., Sun, D. Y., Gou, J., et al., 2015. Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block. Earth Science— Journal of China University of Geosciences, 40(6): 982–994 (in Chinese with English Abstract)CrossRefGoogle Scholar
  33. Khanchuk, A. I., Sakhno, V. G., Alenicheva, A. A., 2010. First SHRIMP U-Pb Zircon Dating of Magmatic Complexes in the Southwestern Primor’e Region. Doklady Earth Sciences, 431(2): 424–428. https://doi.org/10.1134/s1028334x10040033CrossRefGoogle Scholar
  34. Khanchuk, A. I., 2001. Pre-Neogene Tectonics of the Sea of Japan Region: A View from the Russian Side. Earth Science (Chikyu Kagaku), 55(5): 275–291Google Scholar
  35. Kovalenko, S. V., 2006. State Geological Map of Russian Federation, Scale 1: 1 000 000 (3rd Generation). Far East Ser. Sheet L-52 (Boundary), L-53 (Khanka), K-53 (Nakhodka) (in Russian)Google Scholar
  36. Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103–125. https://doi.org/10.13039/501100001659CrossRefGoogle Scholar
  37. Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford. 193Google Scholar
  38. Li, J. Y., Niu, B. G., Song, B., et al., 1999. Crustal Formation and Evolution of Nothern Changbai Mountains. Geological Publishing House, Beijing. 1–137 (in Chinese with English Abstract)Google Scholar
  39. Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4): 207–224. https://doi.org/10.1016/j.jseaes.2005.09.001CrossRefGoogle Scholar
  40. Li, Y., Xu, W. L., Wang, F., et al., 2014. Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen-Zhangguangcai Range Massif, NE China: Implications for the Amalgamation History of the Xing’an and Songnen-Zhangguangcai Range Massifs. Lithos, 205: 394–410. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  41. Liu, K., Zhang, J. J., Wilde, S. A., et al., 2017. Initial Subduction of the Paleo-Pacific Oceanic Plate in NE China: Constraints from Whole-Rock Geochemistry and Zircon U-Pb and Lu-Hf Isotopes of the Khanka Lake Granitoids. Lithos, 274/275: 254–270. https://doi.org/10.1016/j.lithos.2016.12.022CrossRefGoogle Scholar
  42. Lu, L. Z., Xu, W. L., 2011. Petrography. Geological Publishing House, Beijing. 377 (in Chinese)Google Scholar
  43. Luan, J. P., Xu, W. L., Wang, F., et al., 2017. Age and Geochemistry of Neoproterozoic Granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 148: 265–276. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  44. McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 203–236. https://doi.org/10.1029/2000gc000109CrossRefGoogle Scholar
  45. Meng, E., Xu, W. L., Pei, F. P., et al., 2010. Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt. Tectonophysics, 485(1/2/3/4): 42–51. https://doi.org/10.1016/j.tecto.2009.11.015CrossRefGoogle Scholar
  46. Meng, E., Xu, W. L., Yang, D. B., et al., 2011. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications. Acta Petrologica Sinica, 27(4): 1209–1226 (in Chinese with English Abstract)Google Scholar
  47. Natal’in, B., 1993. History and Modes of Mesozoic Accretion in Southeastern Russia. The Island Arc, 2(1): 15–34CrossRefGoogle Scholar
  48. Nowell, G. M., Kempton, P. D., Noble, S. R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149(3/4): 211–233. https://doi.org/10.1016/s0009-2541(98)00036-9CrossRefGoogle Scholar
  49. O’Nions, R. K., Hamilton, P. J., Hooker, P. J., 1983. A Nd Isotope Investigation of Sediments Related to Crustal Development in the British Isles. Earth and Planetary Science Letters, 63(2): 229–240. https://doi.org/10.1016/0012-821x(83)90039-0CrossRefGoogle Scholar
  50. Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557): 571–578. https://doi.org/10.1038/378571a0CrossRefGoogle Scholar
  51. Şengör, A. M. C., Natal’in, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. Cambridge University Press, Cambridge. 486–640Google Scholar
  52. Şengör, A. M. C., Natal’in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0CrossRefGoogle Scholar
  53. Shao, J. A., Tang, K. D., 1995. Terranes in Northeast China and Evolution of Northeast Asia Continental Margin. Seismology Publishing House, Beijing. 185 (in Chinese)Google Scholar
  54. Shcheka, S. A., Ishiwatari, A., Vrzhosek, A. A., 2001. Geology and Petrology of Cambrian Khanka Ophiolite in Primorye (Far East Russia) with Notes on Its Manganese-Rich Chromian Spinel. Earth Science (Chikyu Kagaku), 55(5): 265–274. https://doi.org/10.15080/agcjchikyukagaku.55.5_265Google Scholar
  55. Sorokin, A. A., Kotov, A. B., Sal’nikova, E. B., et al., 2010. Granitoids of the Tyrma-Bureya Complex in the Northern Bureya-Jiamusi Superterrane of the Central Asian Fold Belt: Age and Geodynamic Setting. Russian Geology and Geophysics, 51(5): 563–571. https://doi.org/10.1016/j.rgg.2010.04.011CrossRefGoogle Scholar
  56. Sun, C. Y., Tang, J., Xu, W. L., et al., 2017. Crustal Accretion and Reworking Processes of Micro-Continental Massifs within Orogenic Belt: A Case Study of the Erguna Massif, NE China. Science China Earth Sciences, 60(7): 1256–1267. https://doi.org/10.1007/s11430-016-9033-5CrossRefGoogle Scholar
  57. Sun, D. Y., Gou, J., Wang, T. H., et al., 2013. Geochronological and Geochemical Constraints on the Erguna Massif Basement, NE China-Subduction History of the Mongol-Okhotsk Oceanic Crust. International Geology Review, 55(14): 1801–1816. https://doi.org/10.1080/00206814.2013.804664CrossRefGoogle Scholar
  58. Sun, J. G., Chen, L., Zhao, J. K., et al., 2008. SHRIMP U-Pb Dating of Zircon from Late Yanshanian Granitic Complex in Xiaoxinancha Gold-Rich Copper Orefield of Yanbian and Its Geological Implications. Mineral Deposits, 27(3): 319–328 (in Chinese with English Abstract)Google Scholar
  59. Tang, J., Xu, W. L., Wang, F., et al., 2015. Geochronology, Geochemistry, and Deformation History of Late Jurassic–Early Cretaceous Intrusive Rocks in the Erguna Massif, NE China: Constraints on the Late Mesozoic Tectonic Evolution of the Mongol-Okhotsk Orogenic Belt. Tectonophysics, 658: 91–110. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  60. Tang, J., Xu, W. L., Wang, F., et al., 2016. Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 31: 218–240. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  61. Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford. 312Google Scholar
  62. Tsutsumi, Y., Yokoyama, K., Kasatkin, S. A., et al., 2014. Zircon U-Pb Age of Granitoids in the Maizuru Belt, Southwest Japan and the Southernmost Khanka Massif, Far East Russia. Journal of Mineralogical and Petrological Sciences, 109(2): 97–102. https://doi.org/10.2465/jmps.131017CrossRefGoogle Scholar
  63. Wang, C. Y., Campbell, I. H., Allen, C. M., et al., 2009. Rate of Growth of the Preserved North American Continental Crust: Evidence from Hf and O Isotopes in Mississippi Detrital Zircons. Geochimica et Cosmochimica Acta, 73(3): 712–728. https://doi.org/10.1016/j.gca.2008.10.037CrossRefGoogle Scholar
  64. Wang, C. Y., Campbell, I. H., Stepanov, A. S., et al., 2011. Growth Rate of the Preserved Continental Crust: II. Constraints from Hf and O Isotopes in Detrital Zircons from Greater Russian Rivers. Geochimica et Cosmochimica Acta, 75(5): 1308–1345. https://doi.org/10.1016/j.gca.2010.12.010Google Scholar
  65. Wang, F., Xu, W. L., Meng, E., et al., 2012a. Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt: Geochronological and Geochemical Evidence from Granitoids and Rhyolites. Journal of Asian Earth Sciences, 49: 234–248. https://doi.org/10.1016/j.jseaes.2011.09.022CrossRefGoogle Scholar
  66. Wang, F., Xu, W. L., Gao, F. H., et al., 2012b. Tectonic History of the Zhangguangcailing Group in Eastern Heilongjiang Province, NE China: Constraints from U-Pb Geochronology of Detrital and Magmatic Zircons. Tectonophysics, 566/567: 105–122. https://doi.org/10.1016/j.tecto.2012.07.018Google Scholar
  67. Wang, F., Xu, W. L., Ge, W. C., et al., 2016. The Offset Distance of the Dunhua-Mishan Fault: Constraints from Paleozoic-Mesozoic Magmatism within the Songnen-Zhangguangcai Range, Jiamusi and Khanka Massifs. Acta Petrologica Sinica, 32 (4): 1129–1140 (in Chinese with English Abstract)Google Scholar
  68. Wang, F., Xu, W. L., Xu, Y. G., et al., 2015. Late Triassic Bimodal Igneous Rocks in Eastern Heilongjiang Province, NE China: Implications for the Initiation of Subduction of the Paleo-Pacific Plate beneath Eurasia. Journal of Asian Earth Sciences, 97: 406–423. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  69. Wang, Z. W., Xu, W. L., Pei, F. P., et al., 2017. Geochronology and Geochemistry of Early Paleozoic Igneous Rocks from the Zhangguangcai Range, Northeastern China: Constraints on Tectonic Evolution of the Eastern Central Asian Orogenic Belt. Lithosphere, 9(5): 803–827. https://doi.org/10.1130/l639.1CrossRefGoogle Scholar
  70. Windley, B. F., Alexeiev, D., Xiao, W., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022CrossRefGoogle Scholar
  71. Windley, B. F., Allen, M. B., Zhang, C., et al., 1990. Paleozoic Accretion and Cenozoic Redeformation of the Chinese Tien Shan Range, Central Asia. Geology, 18(2): 128–131CrossRefGoogle Scholar
  72. Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated I-Type Granites in NE China (II): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 67(3/4): 191–204. https://doi.org/10.1016/s0024-4937(03)00015-xCrossRefGoogle Scholar
  73. Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014CrossRefGoogle Scholar
  74. Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143–173. https://doi.org/10.1016/s0009-2541(02)00018-9CrossRefGoogle Scholar
  75. Wu, F. Y., Sun, D. Y., Lin, Q., 1999. Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China. Acta Petrologica Sinica, 15(2): 181–189 (in Chinese with English Abstract)Google Scholar
  76. Wu, F. Y., Zhao, G. C., Sun, D. Y., et al., 2007. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3/4): 542–556. https://doi.org/10.1016/j.jseaes.2007.01.003CrossRefGoogle Scholar
  77. Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 8–1–8-6. https://doi.org/10.1029/2002tc001484CrossRefGoogle Scholar
  78. Xiao, W. J., Zhang, L. C., Qin, K. Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370–395. https://doi.org/10.2475/ajs.304.4.370CrossRefGoogle Scholar
  79. Xu, M. J., Xu, W. L., Wang, F., et al., 2013. Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing’an Range, NE China and Its Tectonic Implications. Acta Petrologica Sinica, 29: 354–368 (in Chinese with English Abstract)Google Scholar
  80. Xu, T., Xu, W. L., Wang, F., et al., 2018. Geochronology and Geochemistry of Early Paleozoic Intrusive Rocks from the Khanka Massif in the Russian far East: Petrogenesis and Tectonic Implications. Lithos, 300/301: 105–120. https://doi.org/10.13039/https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  81. Xu, W. L., Ji, W. Q., Pei, F. P., et al., 2009. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 34(3): 392–402. https://doi.org/10.1016/j.jseaes.2008.07.001CrossRefGoogle Scholar
  82. Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167–193. https://doi.org/10.1016/j.jseaes.2013.04.003CrossRefGoogle Scholar
  83. Yakubchuk, A., 2004. Architecture and Mineral Deposit Settings of the Altaid Orogenic Collage: A Revised Model. Journal of Asian Earth Sciences, 23(5): 761–779. https://doi.org/10.1016/j.jseaes.2004.01.006CrossRefGoogle Scholar
  84. Yakubchuk, A., 2002. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific Orogenic Collages: Similarity and Diversity of Structural Patterns and Metallogenic Zoning. Geological Society, London, Special Publications, 204(1): 273–297. https://doi.org/10.1144/gsl.sp.2002.204.01.16CrossRefGoogle Scholar
  85. Yang, H., Ge, W. C., Zhao, G. C., et al., 2015a. Early Permian–Late Triassic Granitic Magmatism in the Jiamusi-Khanka Massif, Eastern Segment of the Central Asian Orogenic Belt and Its Implications. Gondwana Research, 27(4): 1509–1533. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  86. Yang, H., Ge, W. C., Zhao, G. C., et al., 2015b. Late Triassic Intrusive Complex in the Jidong Region, Jiamusi-Khanka Block, NE China: Geochemistry, Zircon U-Pb Ages, Lu-Hf Isotopes, and Implications for Magma Mingling and Mixing. Lithos, 224/225: 143–159. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  87. Yang, J. H., Wu, F. Y., Shao, J. A., et al., 2006. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3/4): 336–352. https://doi.org/10.1016/j.epsl.2006.04.029CrossRefGoogle Scholar
  88. Yu, J. J., Wang, F., Xu, W. L., et al., 2012. Early Jurassic Mafic Magmatism in the Lesser Xing’an-Zhangguangcai Range, NE China, and Its Tectonic Implications: Constraints from Zircon U-Pb Chronology and Geochemistry. Lithos, 142/143: 256–266. https://doi.org/10.1016/j.lithos.2012.03.016CrossRefGoogle Scholar
  89. Zhao, Y. D., Chi, X. G., Che, J. Y., et al., 2009. Geochemical Characteristics and Tectonic Setting of the Late Triassic Granites in Yanbian-Dongning Area. Journal of Jilin University (Earth Science Edition), 39(3): 425–434 (in Chinese with English Abstract)Google Scholar
  90. Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2010. Was the Easternmost Segment of the Central Asian Orogenic Belt Derived from Gondwana or Siberia: An Intriguing Dilemma?. Journal of Geodynamics, 50(3/4): 300–317. https://doi.org/10.1016/j.jog.2010.02.004CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Earth SciencesJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations