Advertisement

Journal of Earth Science

, Volume 29, Issue 2, pp 416–426 | Cite as

Occurrence of Excess 40Ar in Amphibole: Implications of 40Ar/39Ar Dating by Laser Stepwise Heating and in vacuo Crushing

  • Rong-Guo Hu
  • Xiu-Juan Bai
  • Jan Wijbrans
  • Fraukje Brouwer
  • Yi-Lai Zhao
  • Hua-Ning Qiu
Isotope Geochemistry
  • 47 Downloads

Abstract

The joint methods of 40Ar/39Ar laser stepwise heating and in vacuo crushing have been applied to date amphiboles from the North Qaidam ultra-high pressure metamorphic amphibolites. Two amphibole samples analyzed by laser heating yielded saddle-shaped age spectra with total gas ages of 574.5±2.5 and 562.5±2.5 Ma. These ages are much older than the reported zircon U-Pb ages (∼495 Ma) from Yuka eclogite, indicating the presence of excess 40Ar. In order to decipher the occurrence of excess 40Ar and constrain the age of amphibolite-facies retrogression, two duplicate amphibole samples were further employed for 40Ar/39Ar in vacuo crushing analyses. Both samples exhibit similar monotonically declining release spectra, which are characterized by rapid decline of anomalously old apparent ages in the early steps. The data of the late steps yielded concordant apparent ages with plateau ages of 460.9±1.2 and 459.6±1.8 Ma. We interpret that gases released in the early steps derive from the significant excess 40Ar containing secondary fluid inclusions (SFIs) due to their distribution characteristics along cracks leading to be easily extracted, whereas those released in the later steps represent the contribution of the small primary fluid inclusions (PFIs).

Key words

40Ar/39Ar dating in vacuo crushing amphibole fluid inclusions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank two anonymous reviewers for their comments that substantially improved this manuscript. We also sincerely thank Mr. Roel Van Elsas, Mrs. Wynanda Koot, Mr. Onno Postma, Mr. Arie Bikker, and Mr. Wim van der Plas from the VU Amsterdam, for their kind help in mineral separation, thin section preparation, and technical support for 40Ar/39Ar analyses. This work was funded by the National Natural Science Foundation of China (Nos. 41703054, 41503053), the Guangxi Natural Science Foundation Program (Nos. 2016GXNSFCA380022, 2014GXNSFBA118231) and the Chinese Academy of Sciences-Royal Netherlands Academy of Arts and Sciences Joint PhD Training Programme (No. O8PhD-08). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0947-x.

References Cited

  1. Bai, X. J., Wang, M., Jiang, Y. D., et al., 2013. Direct Dating of Tin-Tungsten Mineralization of the Piaotang Tungsten Deposit, South China, by 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 114: 1–12. https://doi.org/10.1016/j.gca.2013.03.022CrossRefGoogle Scholar
  2. Blanckenburg, F. V., Villa, I. M., 1988. Argon Retentivity and Argon Excess in Amphiboles from the Garbenschists of the Western Tauern Window, Eastern Alps. Contributions to Mineralogy and Petrology, 100(1): 1–11. https://doi.org/10.1007/bf00399435CrossRefGoogle Scholar
  3. Burgess, R., Kelley, S. P., Parsons, I., et al., 1992. 40Ar-39Ar Analysis of Perthite Microtextures and Fluid Inclusions in Alkali Feldspars from the Klokken Syenite, South Greenland. Earth and Planetary Science Letters, 109(1/2): 147–167. https://doi.org/10.1016/0012-821x(92)90080-fCrossRefGoogle Scholar
  4. Chen, D. L., Sun, Y., Liu, L., et al., 2005. Metamorphic Evolution of the Yuka Eclogite in the North Qaidam, NW China: Evidences from the Compositional Zonation of Garnet and Reaction Texture in the Rock. Acta Petrologica Sinica, 21(4): 1039–1048 (in Chinese with English Abstract)Google Scholar
  5. Chen, D. L., Liu, L., Sun, Y., et al., 2009. Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3/4): 259–272. https://doi.org/10.1016/j.jseaes.2008.12.001CrossRefGoogle Scholar
  6. Chen, R. X., Zheng, Y. F., Gong, B., et al., 2007. Origin of Retrograde Fluid in Ultrahigh-Pressure Metamorphic Rocks: Constraints from Mineral Hydrogen Isotope and Water Content Changes in Eclogite–gneiss Transitions in the Sulu Orogen. Geochimica et Cosmochimica Acta, 71(9): 2299–2325. https://doi.org/10.1016/j.gca.2007.02.012CrossRefGoogle Scholar
  7. Cumbest, R. J., Johnson, E. L., Onstott, T. C., 1994. Argon Composition of Metamorphic Fluids: Implications for 40Ar/39Ar Geochronology. Geological Society of America Bulletin, 106(7): 942–951. https://doi.org/10.1130/0016-7606(1994)106<0942:acomfi>2.3.co;2CrossRefGoogle Scholar
  8. Di Vincenzo, G., Palmeri, R., 2001. An 40Ar-39Ar Investigation of High-Pressure Metamorphism and the Retrogressive History of Mafic Eclogites from the Lanterman Range (Antarctica): Evidence against a Simple Temperature Control on Argon Transport in Amphibole. Contributions to Mineralogy and Petrology, 141(1): 15–35. https://doi.org/10.1007/s004100000226CrossRefGoogle Scholar
  9. Dunlap, W., Kronenberg, A., 2001. Argon Loss during Deformation of Micas: Constraints from Laboratory Deformation Experiments. Contributions to Mineralogy and Petrology, 141(2): 174–185. https://doi.org/10.1007/s004100000217CrossRefGoogle Scholar
  10. Frezzotti, M. L., Ferrando, S., Dallai, L., et al., 2007. Intermediate Alkali-Alumino-Silicate Aqueous Solutions Released by Deeply Subducted Continental Crust: Fluid Evolution in UHP OH-Rich Topaz-Kyanite Quartzites from Donghai (Sulu, China). Journal of Petrology, 48(6): 1219–1241. https://doi.org/10.1093/petrology/egm015CrossRefGoogle Scholar
  11. Harrison, T. M., McDougall, I., 1981. Excess 40Ar in Metamorphic Rocks from Broken Hill, New South Wales: Implications for 40Ar/39Ar Age Spectra and the Thermal History of the Region. Earth and Planetary Science Letters, 55(1): 123–149. https://doi.org/10.1016/0012-821x(81)90092-3CrossRefGoogle Scholar
  12. Hess, J., Lippolt, H., 1994. Compilation of K-Ar measurements on HD-B1 Standard Biotite 1994 Status Report. Phanerozoic Time Scale. In: Odin, G. S., ed., IGCP Project. Bulletin of Liaison and Informatics, 12: 19–23Google Scholar
  13. Holland, T., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 116(4): 433–447. https://doi.org/10.1007/bf00310910CrossRefGoogle Scholar
  14. Hu, R. G., Qiu, H. N., Wijbrans, J. R., et al., 2014. 40Ar/39Ar Geochronology Study and the Genesis of Extraneous 40Ar in Yuka HP/UHP Phengite, North Qaidam, NW China. Earth Science Frontiers, 21(1): 216–227 (in Chinese with English Abstract)Google Scholar
  15. Hu, R. G., Wijbran J. R., Brouwer F. M., et al., 2015a. Fluid Inclusions Study and Direct 40Ar/39Ar Dating by in vacuo Crushing of Quartz Veins within UHP Metamorphic Rocks from Yuka Terrane, North Qaidam Orogen, China. Geochemical Journal, 49(2): 139–155. https://doi.org/10.2343/geochemj.2.0337CrossRefGoogle Scholar
  16. Hu, R. G., Wijbrans, J., Brouwer, F., et al., 2015b. Retrograde Metamorphism of the Eclogite in North Qaidam, Western China: Constraints by Joint 40Ar/39Ar in vacuo Crushing and Stepped Heating. Geoscience Frontiers, 6(5): 759–770. https://doi.org/10.13039/501100001722CrossRefGoogle Scholar
  17. Hu, R. G., Wijbrans, J. R., Brouwer, F. M., et al., 2016. 40Ar/39Ar Thermochronological Constraints on the Retrogression and Exhumation of Ultra-High Pressure (UHP) Metamorphic Rocks from Xitieshan Terrane, North Qaidam, China. Gondwana Research, 36: 157–175. https://doi.org/10.1016/j.gr.2016.04.009CrossRefGoogle Scholar
  18. Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369–379. https://doi.org/10.1016/j.gca.2012.01.044CrossRefGoogle Scholar
  19. Kelley, S., Turner, G., Butterfield, A. W., et al., 1986. The Source and Significance of Argon Isotopes in Fluid Inclusions from Areas of Mineralization. Earth and Planetary Science Letters, 79(3/4): 303–318. https://doi.org/10.1016/0012-821x(86)90187-1CrossRefGoogle Scholar
  20. Kelley, S., 2002. Excess Argon in K-Ar and Ar-Ar Geochronology. Chemical Geology, 188(1/2): 1–22. https://doi.org/10.1016/s0009-2541(02)00064-5CrossRefGoogle Scholar
  21. Kendrick, M. A., Burgess, R., Pattrick, R. A. D., et al., 2001. Halogen and Ar-Ar Age Determinations of Inclusions within Quartz Veins from Porphyry Copper Deposits Using Complementary Noble Gas Extraction Techniques. Chemical Geology, 177(3/4): 351–370. https://doi.org/10.1016/s0009-2541(00)00419-8CrossRefGoogle Scholar
  22. Kendrick, M. A., Phillips, D., 2009a. Discussion of ‘the Paleozoic Metamorphic History of the Central Orogenic Belt of China from 40Ar/39Ar Geochronology of Eclogite Garnet Fluid Inclusions by Qiu Hua-Ning and Wijbrans J.R.’. Earth and Planetary Science Letters, 279(3/4): 392–394. https://doi.org/10.1016/j.epsl.2008.12.047CrossRefGoogle Scholar
  23. Kendrick, M. A., Phillips, D., 2009b. New Constraints on the Release of Noble Gases during in Vacuo Crushing and Application to Scapolite Br-Cl-I and 40Ar/39Ar Age Determinations. Geochimica et Cosmochimica Acta, 73(19): 5673–5692. https://doi.org/10.1016/j.gca.2009.06.032CrossRefGoogle Scholar
  24. Kendrick, M. A., Phillips, D., Wallace, M., et al., 2011. Halogens and Noble Gases in Sedimentary Formation Waters and Zn-Pb Deposits: A Case Study from the Lennard Shelf, Australia. Applied Geochemistry, 26(12): 2089–2100. https://doi.org/10.1016/j.apgeochem.2011.07.007CrossRefGoogle Scholar
  25. Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619. https://doi.org/10.1016/s0098-3004(01)00095-4CrossRefGoogle Scholar
  26. Lanphere, M. A., Brent Dalrymple, G., 1976. Identification of Excess 40Ar by the 40Ar/39Ar Age Spectrum Technique. Earth and Planetary Science Letters, 32(2): 141–148. https://doi.org/10.1016/0012-821x(76)90052-2CrossRefGoogle Scholar
  27. Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, 82(9/10): 1019–1037Google Scholar
  28. McDougall, I., Harrison, M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, New York. 269Google Scholar
  29. Menold, C. A., Grove, M., Sievers, N. E., et al., 2016. Argon, Oxygen, and Boron Isotopic Evidence Documenting 40ArE Accumulation in Phengite during Water-Rich High-Pressure Subduction Metasomatism of Continental Crust. Earth and Planetary Science Letters, 446: 56–67. https://doi.org/10.13039/100000001CrossRefGoogle Scholar
  30. Qiu, H. N., Wijbrans, J. R., 2009. Reply to Comment by M. A. Kendrick and D. Phillips (2009) on “The Paleozoic Metamorphic History of the Central Orogenic Belt of China from 40Ar/39Ar Geochronology of Eclogite Garnet Fluid Inclusions” by Hua-Ning Qiu and J. R. Wijbrans (2008) [Earth Planet. Sci. Lett. 268 (2008) 501–514]. Earth and Planetary Science Letters, 279(3/4): 395–397. https://doi.org/10.1016/j.epsl.2009.01.012CrossRefGoogle Scholar
  31. Qiu, H. N., Wijbrans, J. R., 2006. Paleozoic Ages and Excess 40Ar in Garnets from the Bixiling Eclogite in Dabieshan, China: New Insights from 40Ar/39Ar Dating by Stepwise Crushing. Geochimica et Cosmochimica Acta, 70(9): 2354–2370. https://doi.org/10.1016/j.gca.2005.11.030CrossRefGoogle Scholar
  32. Qiu, H. N., Wijbrans, J. R., 2008. The Paleozoic Metamorphic History of the Central Orogenic Belt of China from 40Ar/39Ar Geochronology of Eclogite Garnet Fluid Inclusions. Earth and Planetary Science Letters, 268(3/4): 501–514. https://doi.org/10.1016/j.epsl.2008.01.042CrossRefGoogle Scholar
  33. Renne, P. R., Swisher, C. C., Deino, A. L., et al., 1998. Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. Chemical Geology, 145(1/2): 117–152. https://doi.org/10.1016/S0009-2541(97)00159-9CrossRefGoogle Scholar
  34. Schneider, B., Kuiper, K., Postma, O., et al., 2009. 40Ar/39Ar Geochronology Using a Quadrupole Mass Spectrometer. Quaternary Geochronology, 4(6): 508–516. https://doi.org/10.1016/j.quageo.2009.08.003CrossRefGoogle Scholar
  35. Smye, A. J., Warren, C. J., Bickle, M. J., 2013. The Signature of Devolatisation: Extraneous 40Ar Systematics in High-Pressure Metamorphic Rocks. Geochimica et Cosmochimica Acta, 113: 94–112. https://doi.org/10.1016/j.gca.2013.03.018CrossRefGoogle Scholar
  36. Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2005. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3): 435–455. https://doi.org/10.1093/petrology/egi080CrossRefGoogle Scholar
  37. Song, S. G., Niu, Y. L., Su, L., et al., 2014. Continental Orogenesis from Ocean Subduction, Continent Collision/subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59–84. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  38. Turner, G., Wang, S. S., 1992. Excess Argon, Crustal Fluids and Apparent Isochrons from Crushing K-Feldspar. Earth and Planetary Science Letters, 110(1/2/3/4): 193–211. https://doi.org/10.1016/0012-821x(92)90048-zCrossRefGoogle Scholar
  39. Uunk, B., Postma, O., Wijbrans, J., et al., 2017. Direct 40Ar/39Ar Age Determination of Fluid Inclusions Using in-vacuo Stepwise Crushing—Example of Garnet from the Cycladic Blueschist Unit on Syros. 19th EGU General Assembly. 15117Google Scholar
  40. Villa, I. M., 2001. Radiogenic Isotopes in Fluid Inclusions. Lithos, 55(1/2/3/4): 115–124. https://doi.org/10.1016/s0024-4937(00)00041-4CrossRefGoogle Scholar
  41. Wartho, J. A., Rex, D. C., Guise, P. G., 1996. Excess Argon in Amphiboles Linked to Greenschist Facies Alteration in the Kamila Amphibolite Belt, Kohistan Island Arc System, Northern Pakistan: Insights from 40Ar/39Ar Step-Heating and Acid Leaching Experiments. Geological Magazine, 133(5): 595–609. https://doi.org/10.1017/s0016756800007871CrossRefGoogle Scholar
  42. Wijbrans, J. R., Pringle, M. S., Koppers, A. A. P., et al., 1995. Argon Geochronology of Small Samples Using the Vulkaan Argon Laserprobe. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, 98(2): 185–218Google Scholar
  43. Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 333(11): 719–724. https://doi.org/10.1016/s1251-8050(01)01718-9Google Scholar
  44. Zeitler, P. K., Fitz Gerald, J. D., 1986. Saddle-Shaped Age Spectra from Young, Microstructurally Complex Potassium Feldspars. Geochimica et Cosmochimica Acta, 50(6): 1185–1199. https://doi.org/10.1016/0016-7037(86)90401-1CrossRefGoogle Scholar
  45. Zhang, G. B., Zhang, L. F., Christy, A. G., 2013. From Oceanic Subduction to Continental Collision: An Overview of HP-UHP Metamorphic Rocks in the North Qaidam UHP Belt, NW China. Journal of Asian Earth Sciences, 63: 98–111. https://doi.org/10.1016/j.jseaes.2012.07.014CrossRefGoogle Scholar
  46. Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2009. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6): 1287–1300. https://doi.org/10.1127/0935-1221/2009/0021-1989CrossRefGoogle Scholar
  47. Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints. Lithos, 84(1/2): 51–76. https://doi.org/10.1016/j.lithos.2005.02.002CrossRefGoogle Scholar
  48. Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie–Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1/2): 105–161. https://doi.org/10.1016/s0012-8252(02)00133-2CrossRefGoogle Scholar
  49. Zheng, Y. F., 2004. Fluid Activity during Exhumation of Deep-Subducted Continental Plate. Chinese Science Bulletin, 49(10): 985–998. https://doi.org/10.1007/bf03184025CrossRefGoogle Scholar
  50. Zong, K. Q., Liu, Y. S., Hu, Z. C., et al., 2010. Melting-Induced Fluid Flow during Exhumation of Gneisses of the Sulu Ultrahigh-Pressure Terrane. Lithos, 120(3/4): 490–510. https://doi.org/10.1016/j.lithos.2010.09.013CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Earth Sciences, Guangxi Key Laboratory of Hidden Metallic Ore Deposits ExplorationGuilin University of TechnologyGuilinChina
  2. 2.Geology & Geochemistry Cluster, Department of Earth SciencesVU AmsterdamAmsterdamThe Netherlands
  3. 3.Key Laboratory of Tectonics and Petroleum Resources, Ministry of EducationChina University of GeosciencesWuhanChina
  4. 4.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations