Zircon U-Pb Ages and Sr-Nd-Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance

  • Youwei Chen
  • Ruizhong Hu
  • Xianwu Bi
  • Shaohua Dong
  • Yue Xu
  • Ting Zhou


The Huichizi granite complex is the largest Paleozoic I-type intrusion located in the North Qinling orogenic belt (NQB). In this study, we present systematic geochemical element data, zircon U-Pb ages, Lu-Hf isotopic data, and Sr-Nd isotopic data for the Huichizi granites. In terms of mineral and chemical compositions, these granites are biotite monzonitic and alkali-feldspar granites, both of which are characterized by high SiO2 and total alkali contents and low MgO, TiO2, and TFeO contents. These granites are weakly peraluminous (A/CNK values are 1–1.06 for biotite monzonitic granites and 1.04–1.09 for alkali-feldspar granites) and possess the geochemical characteristics of adakitic rocks, e.g., high Sr contents (319 ppm–633 ppm), Sr/Y ratios (18.5–174), and (La/Yb)N ratios (17.6–57) and low MgO (0.04 wt.%–0.83 wt.%), Y (3.0 ppm–17.2 ppm), and heavy rare-earth element (HREE) contents. This indicates that these rocks were most likely derived from the partial melting of a thickened lower crust. In situ zircon U-Pb dating of these granites yields Early Caledonian ages (437 Ma for biotite monzonitic granites and 424 Ma for alkali-feldspar granites), indicating that the Huichizi granitic complex is the product of multi-periodic magmatism. The positive but varying zircon εHf(t) values (+0.6 to +8.5) suggest that this thickened lower crust was mainly juvenile, i.e., accreted from depleted mantle during the Neo-Mesoproterozoic Period, but involved the ancient recycled crust. Biotite monzonitic granites formed during crust thickening at the extrusion stage, whereas the alkali granites formed during crust thickening at the extension stage (post extrusion). The Huichizi granite complex witnessed the process of extrusion to extension because of the collision between the NCB and the Qinling microcontinent in the Caledonian.


U-Pb age Sr-Nd-Hf isotope Huichizi granitic complex adakitic granite North Qinling orogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was financially supported by the National Basic Research Program of China (No. 2014CB440906), the Strateic Priority Research Program (B) of Chinese Academy of Sciences (No. XDB18030200), and the National Natural Sciences Foundation of China (Nos. 41473049, 41103027). The authors are grateful to Dr. Zhaochu Hu from China University of Geosciences and Dr. Tao Yang from Nanjing University for their great help with expert isotopic analysis support. We appreciate two anonymous reviewers, who improved the paper greatly. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0906-6.

Supplementary material

12583_2017_906_MOESM1_ESM.xlsx (34 kb)
Supplementary material, approximately 1930 KB.


  1. Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth’s Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252–255. https://doi.org/10.1038/20426Google Scholar
  2. Bader, T., Ratschbacher, L., Franz, L., et al., 2013. The Heart of China Revisited, I. Proterozoic Tectonics of the Qin Mountains in the Core of Supercontinent Rodinia. Tectonics, 32(3): 661–687. https://doi.org/10.1002/tect.20024Google Scholar
  3. Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365–401. https://doi.org/10.1093/petrology/32.2.365Google Scholar
  4. Belousova, E., Griffin, W., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7Google Scholar
  5. Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258. https://doi.org/10.1016/s0012-821x(97)00040-xGoogle Scholar
  6. Bottazzi, P., Tiepolo, M., Vannucci, R., et al., 1999. Distinct Site Preferences for Heavy and Light REE in Amphibole and the Prediction of Amph/L D REE. Contributions to Mineralogy and Petrology, 137(1/2): 36–45. https://doi.org/10.1007/s004100050580Google Scholar
  7. Cao, Y., Song, S. G., Su, L., et al., 2016. Highly Refractory Peridotites in Songshugou, Qinling Orogen: Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle. Lithos, 252/253: 234–254. https://doi.org/10.13039/501100001809Google Scholar
  8. Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257–268. https://doi.org/10.1007/s11434-006-0257-7Google Scholar
  9. Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33–51. https://doi.org/10.1007/s004100050467Google Scholar
  10. Chen, D. L., 2004. LA-ICP-MS Zircon U-Pb Dating for High-Pressure Basic Granulite from North Qinling and Its Geological Significance. Chinese Science Bulletin, 49(21): 2296–2304 (in Chinese)Google Scholar
  11. Chen, D. L., Liu, L., 2011. New Data on the Chronology of Eclogite Andassociated Rock from Guanpo Area, North Qinling Orogeny and Its Constraint on Nature of North Qinling HP-UHP Eclogite Terrane. Earth Science Frontiers, 18(2): 158–168 (in Chinese with English abstract)Google Scholar
  12. Chen, D. L., Ren, Y. F., Gong, X. K., et al., 2015. Identification and Its Geological Significance of Eclogite Insongshugou, the North Qinling. Acta Petrologica Sinica, 31(7): 1841–1854 (in Chinese with English Abstract)Google Scholar
  13. Chen, N. S., Han, Y. Q., You, Z. D., et al., 1991. Whole-Rock Sm-Nd, Rb-Sr, and Single Grain Zircon Pb-Pb Dating of Complex Rocks from the Interior of the Qinling Orogenic Belt, Western Henan and Its Crustal Evolution. Geochemica, 20(3): 219–228 (in Chinese with English Abstract)Google Scholar
  14. Chen, Y. J., 2010. Indosinian Tectonic Setting, Magmatism and Metallogenesis in Qinling Orogen, Central China. Geology in China, 37(4): 854–866 (in Chinese with English Abstract)Google Scholar
  15. Cheng, H., Zhang, C., Vervoort, J. D., et al., 2011. Geochronology of the Transition of Eclogite to Amphibolite Facies Metamorphism in the North Qinling Orogen of Central China. Lithos, 125(3/4): 969–983. https://doi.org/10.1016/j.lithos.2011.05.010Google Scholar
  16. Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Timing of Eclogite Facies Metamorphism in the North Qinling by U-Pb and Lu-Hf Geochronology. Lithos, 136–139: 46–59. https://doi.org/10.1016/j.lithos.2011.06.003Google Scholar
  17. Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021. https://doi.org/10.1130/g19796.1Google Scholar
  18. Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0Google Scholar
  19. Ding, X., Hu, Y. H., Zhang, H., et al., 2013. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. The Journal of Geology, 121(3): 255–274. https://doi.org/10.1086/669978Google Scholar
  20. Ding, X., Lundstrom, C., Huang, F., et al., 2009. Natural and Experimental Constraints on Formation of the Continental Crust Based on Niobium-Tantalum Fractionation. International Geology Review, 51(6): 473–501. https://doi.org/10.1080/00206810902759749Google Scholar
  21. Diwu, C. R., Sun, Y., Liu, L., et al., 2010. The Disintegration of Kuanping Group in North Qinling Orogenic Belts and Neo-Proterozoic N-MORB. Acta Petrologica Sinica, 26(7): 2025–2038 (in Chinese with English Abstract)Google Scholar
  22. Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Geochronological, Geochemical, and Nd-Hf Isotopic Studies of the Qinling Complex, Central China: Implications for the Evolutionary History of the North Qinling Orogenic Belt. Geoscience Frontiers, 5(4): 499–513. https://doi.org/10.1016/j.gsf.2014.04.001Google Scholar
  23. Dong, Y. P., Genser, J., Neubauer, F., et al., 2011a. U-Pb and 40Ar/39Ar Geochronological Constraints on the Exhumation History of the North Qinling Terrane, China. Gondwana Research, 19(4): 881–893. https://doi.org/10.1016/j.gr.2010.09.007Google Scholar
  24. Dong, Y. P., Zhang, G. W., Hauzenberger, C., et al., 2011b. Palaeozoic Tectonics and Evolutionary History of the Qinling Orogen: Evidence from Geochemistry and Geochronology of Ophiolite and Related Volcanic Rocks. Lithos, 122(1/2): 39–56. https://doi.org/10.13039/501100001809Google Scholar
  25. Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011c. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes. 2011.03.002Google Scholar
  26. Dong, Y. P., Yang, Z., Liu, X. M., et al., 2014. Neoproterozoic Amalgamation of the Northern Qinling Terrain to the North China Craton: Constraints from Geochronology and Geochemistry of the Kuanping Ophiolite. Precambrian Research, 255: 77–95. https://doi.org/10.13039/501100001809Google Scholar
  27. Dong, Y. P., Zhang, X. N., Liu, X. M., et al., 2015. Propagation Tectonics and Multiple Accretionary Processes of the Qinling Orogen. Journal of Asian Earth Sciences, 104: 84–98. https://doi.org/10.13039/501100001809Google Scholar
  28. Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40. https://doi.org/10.13039/501100001809Google Scholar
  29. Dostal, J., Chatterjee, A. K., 2000. Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163(1–4): 207–218. https://doi.org/10.1016/s0009-2541(99)00113-8Google Scholar
  30. Feeley, T. C., Hacker, M. D., 1995. Intracrustal Derivation of Na-Rich Andesitic and Dacitic Magmas: An Example from Volcán Ollagüe, Andean Central Volcanic Zone. The Journal of Geology, 103(2): 213–225. https://doi.org/10.1086/629737Google Scholar
  31. Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 64(5): 933–938. https://doi.org/10.1016/s0016-7037(99)00355-5Google Scholar
  32. Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837–840. https://doi.org/10.1038/nature00799Google Scholar
  33. Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897. https://doi.org/10.1038/nature03162Google Scholar
  34. Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347–359. https://doi.org/10.1016/0009-2541(94)00145-xGoogle Scholar
  35. Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. https://doi.org/10.1016/s0024-4937(02)00082-8Google Scholar
  36. Guo, F., Nakamuru, E., Fan, W., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661–692. https://doi.org/10.1093/petrology/egl077Google Scholar
  37. Hacker, B. R., Ratschbacher, L., Liou, J. G., 2004. Subduction, Collision and Exhumation in the Ultrahigh-Pressure Qinling-Dabie Orogen. Geological Society, London, Special Publications, 226(1): 157–175. https://doi.org/10.1144/gsl.sp.2004.226.01.09Google Scholar
  38. Hoskin, P. W. O., Black, L. P., 2002. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.xGoogle Scholar
  39. Hu, J. M., Cui, J. T., Meng, Q. R., et al., 2004. The U-Pb Age of Zircons Separated from the Zhashui Granite in Qinling Orogen and Its Significance. Geological Review, 50(3): 323–329 (in Chinese with English Abstract)Google Scholar
  40. Huang, F., He, Y. S., 2010. Partial Melting of the Dry Mafic Continental Crust: Implications for Petrogenesis of C-Type Adakites. Chinese Science Bulletin, 55(22): 2428–2439. https://doi.org/10.1007/s11434-010-3224-2Google Scholar
  41. Huang, X. L., Xu, Y. G., Lan, J. B., et al., 2009. Neoproterozoic Adakitic Rocks from Mopanshan in the Western Yangtze Craton: Partial Melts of a Thickened Lower Crust. Lithos, 112(3/4): 367–381. https://doi.org/10.1016/j.lithos.2009.03.028Google Scholar
  42. Jochum, K. P., Seufert, H. M., Spettel, B., et al., 1986. The Solar-System Abundances of Nb, Ta, and Y, and the Relative Abundances of Refractory Lithophile Elements in Differentiated Planetary Bodies. Geochimica et Cosmochimica Acta, 50(6): 1173–1183. https://doi.org/10.1016/0016-7037(86)90400-xGoogle Scholar
  43. Kay, R. W., Kay, S. M., 2002. Andean Adakites: Three Ways to Make them. Acta Petrologica Sinica, 18(2): 303–311 (in Chinese with English Abstract)Google Scholar
  44. Kröner, A., Zhang, G. W., Sun, Y., 1993. Granulites in the Tongbai Area, Qinling Belt, China: Geochemistry, Petrology, Single Zircon Geochronology, and Implications for the Tectonic Evolution of Eastern Asia. Tectonics, 12(1): 245–255. https://doi.org/10.1029/92tc01788Google Scholar
  45. Lei, M., 2010. Petrogenesis of Granites and Their Relation to Tectonic Evolution of Orogenin the East Part of Qinling Orogenic Belt: [Dissertation]. Chinese Academy of Geological Sciences, Beijing. 1–162 (in Chinese)Google Scholar
  46. Li, N., Chen, Y. J., Santosh, M., et al., 2015. Compositional Polarity of Triassic Granitoids in the Qinling Orogen, China: Implication for Termination of the Northernmost Paleo-Tethys. Gondwana Research, 27(1): 244–257. https://doi.org/10.13039/501100001809Google Scholar
  47. Li, S. Z., Kusky, T. M., Wang, L., et al., 2007. Collision Leading to Multiple-Stage Large-Scale Extrusion in the Qinling Orogen: Insights from the Mianlue Suture. Gondwana Research, 12(1/2): 121–143. https://doi.org/10.1016/j.gr.2006.11.011Google Scholar
  48. Li, W., Wang, T., Wang, X., 2001. Source of Huichizi Granitoid Complex Pluton in Northern Qinling, Central China: Constrained in Element and Isotopic Geochemistry. Earth Science—Journal of China University of Geosciences, 26(3): 269–278 (in Chinese with English Abstract)Google Scholar
  49. Li, W., Wang, T., Wang, X., et al., 2000. Single Zircon Dating of the Huichizi Complex, North Qinling: Its Geological Significance. Regional Geology of China, 19(2):172–174 (in Chinese with English Abstract)Google Scholar
  50. Liang, J. L., Ding, X., Sun, X. M., et al., 2009. Nb/Ta Fractionation Observed in Eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology, 268(1/2): 27–40. https://doi.org/10.1016/j.chemgeo.2009.07.006Google Scholar
  51. Liu, B. X., 2014. Magmatism and Crustal Evolution in the Eastern North Qinling Terrain: [Dissertation]. University of Science and Technology of China, Hefei. 90–162 (in Chinese with English Abstract)Google Scholar
  52. Liu, J. F., Sun, Y., Tong, L. X., et al., 2009. Emplacement Age of the Songshugou Ultramafic Massif in the Qinling Orogenic Belt, and Geologic Implications. International Geology Review, 51(1): 58–76. https://doi.org/10.1080/00206810802650576Google Scholar
  53. Liu, L., Chen, D. L., Sun, Y., et al., 2003. Discovery of Relic Majoritic Garnet in Felsic Metamorphic Rocks of Qinling Complex, North Qinling Orogenic Belt, China. Alice Wain Memorial Western Norway Eclogite Field Symposium, Selje, Western Noway. 1: 82Google Scholar
  54. Liu, L., Liao, X. Y., Zhang, C. L., et al., 2013. Multi-Metamorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications. Acta Petrologica Sinica, 29(5): 1634–1656 (in Chinese with English Abstract)Google Scholar
  55. Liu, L., Yang, J. X., Chen, D. L., et al., 2010. Progress and Controversy in the Study of HP-UHP Metamorphic Terranes in the West and Middle Central China Orogen. Journal of Earth Science, 21(5): 581–597. https://doi.org/10.1007/s12583-010-0128-7Google Scholar
  56. Liu, Q., Wu, Y. B., Wang, H., et al., 2014. Zircon U-Pb Ages and Hf Isotope Compositions of Migmatites from the North Qinling Terrane and Their Geological Implications. Journal of Metamorphic Geology, 32(2): 177–193. https://doi.org/10.1111/jmg.12065Google Scholar
  57. Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004Google Scholar
  58. Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICPMS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4Google Scholar
  59. Lu, S. N., Chen, Z. H., Xiang, Z. Q., 2006. U-Pb Ages of Detrital Zircons from the Para-Metamorphic Rocks of the Qinling Group and Their Geological Significance. Earth Science Frontiers, 13(6): 303–310 (in Chinese with English Abstract)Google Scholar
  60. Lu, S. N., Li, H. K., Chen, Z. H., et al., 2003. Neoproterozoic Geological Evolution of the Qinling Orogen and Respond to Events of Rodinia Supercontinents. Geology Publishing House, Beijing. 1–193 (in Chinese)Google Scholar
  61. Lu, S. N., Yu, H. F., Li, H. K., et al., 2009. Precambrian Geology of Central Orogen (Western and Middle Part). Geology Publishing House, Beijing. 203 (in Chinese)Google Scholar
  62. Lu, X. X., Dong, Y., Chang, Q. L., et al., 1996. Indosinian Shahewan Rapakivi Granite in Qinling and Its Dynamic Significance. Science in China(Series D: Earth Sciences, 39(3): 266–272 (in Chinese)Google Scholar
  63. Lu, X. X., Dong, Y., Wei, X. D., et al., 1999. Age of Tuwushan A-Type Granite in the East Qinling and Its Tectonic Implications. Chinese Science Bulletin, 44(9): 975–978 (in Chinese with English Abstract)Google Scholar
  64. Ludwig, K. R., 2003. User’s Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, CA Special Publication, Berkeley. 1–10Google Scholar
  65. Ma, L., Wang, B. D., Jiang, Z. Q., et al., 2014. Petrogenesis of the Early Eocene Adakitic Rocks in the Napuri Area, Southern Lhasa: Partial Melting of Thickened Lower Crust during Slab Break-off and Implications for Crustal Thickening in Southern Tibet. Lithos, 196/197: 321–338. https://doi.org/10.1016/j.lithos.2014.02.011Google Scholar
  66. Macpherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3/4): 581–593. https://doi.org/10.1016/j.epsl.2005.12.034Google Scholar
  67. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2Google Scholar
  68. Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411–429. https://doi.org/10.1016/s0024-4937(98)00076-0Google Scholar
  69. Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048Google Scholar
  70. Mattauer, M., Matte, P., Malavieille, J., et al., 1985. Tectonics of the Qinling Belt: Build-up and Evolution of Eastern Asia. Nature, 317(6037): 496–500. https://doi.org/10.1038/317496a0Google Scholar
  71. Meng, Q. R., Zhang, G. W., 1999. Timing of Collision of the North and South China Blocks: Controversy and Reconciliation. Geology, 27(2): 123. https://doi.org/10.1130/0091-7613(1999)027<0123:tocotn>2.3.co;2Google Scholar
  72. Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183–196. https://doi.org/10.1016/s0040-1951(00)00106-2Google Scholar
  73. Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9Google Scholar
  74. Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the “Adakitic Signature”. Lithos, 112(3/4): 556–574. https://doi.org/10.1016/j.lithos. 2009.04.001Google Scholar
  75. Muir, R. J., Weaver, S. D., Bradshaw, J. D., et al., 1995. The Cretaceous Separation Point Batholith, New Zealand: Granitoid Magmas Formed by Melting of Mafic Lithosphere. Journal of the Geological Society, 152(4): 689–701. https://doi.org/10.1144/gsjgs.152.4.0689Google Scholar
  76. Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1/2): 227–244. https://doi.org/10.1016/0012-821x(94)90042-6Google Scholar
  77. Pearce, J. A., Harris, N. B. W, Tindle, A. G, 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956Google Scholar
  78. Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491–1521. https://doi.org/10.1093/petrology/37.6.1491Google Scholar
  79. Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410(6825): 197–200. https://doi.org/10.1038/35065583Google Scholar
  80. Qi, L., Hu, J., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507–513.https://doi.org/10.1016/S0039-9140(99)00318-5Google Scholar
  81. Qian, J. H., Yang, X. Q., Liu, L., et al., 2013. Zircon U-Pb Dating, Mineral Inclusions, Lu-Hf Isotopic Data and Their Geological Significance of Garnet Amphibolite from Songshugou, North Qinling. Acta Petrologica Sinica, 29(9): 3087–3098 (in Chinese with English Abstract)Google Scholar
  82. Qian, Q., Hermann, J., 2013. Partial Melting of Lower Crust at 10–15 kbar: Constraints on Adakite and TTG Formation. Contributions to Mineralogy and Petrology, 165(6): 1195–1224. https://doi.org/10.1007/s00410-013-0854-9Google Scholar
  83. Qin, J. F., 2010. Petrogenesis and Geodynamic Implications of the Late-Triassic Granitoids from the Qinling Orogenic Belt: [Dissertation]. Northwest University, Xi’an. 78–163 (in Chinese with English Abstract)Google Scholar
  84. Qin, J. F., Lai, S. C., Li, Y. F., 2007. Genesis of the Indosinian Guangtoushan Adakitic Biotite Plagiogranite in the Mianxian-Lueyang (Mianlue) Suture, South Qinling, China, and Its Tectonic Implications. Geological Bulletin of China, 26(4): 466–471 (in Chinese with English Abstract)Google Scholar
  85. Qin, J. F., Lai, S. C., Li, Y. F., 2013. Multi-Stage Granitic Magmatism during Exhumation of Subducted Continental Lithosphere: Evidence from the Wulong Pluton, South Qinling. Gondwana Research, 24(3/4): 1108–1126. https://doi.org/10.1016/j.gr.2013.02.005Google Scholar
  86. Qin, Z. W., Wu, Y. B., Siebel, W., et al., 2015. Genesis of Adakitic Granitoids by Partial Melting of Thickened Lower Crust and Its Implications for Early Crustal Growth: A Case Study from the Huichizi Pluton, Qinling Orogen, Central China. Lithos, 238: 1–12. https://doi.org/10.13039/501100001809Google Scholar
  87. Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335–356. https://doi.org/10.1016/s0009-2541(99)00106-0Google Scholar
  88. Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891–931. https://doi.org/10.1093/petrology/ 36.4.891Google Scholar
  89. Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial Melting of Amphibolite/ Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1–4): 1–25. https://doi.org/10.1016/0301-9268(91)90092-oGoogle Scholar
  90. Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53. https://doi.org/10.1016/s0040-1951(03)00053-2Google Scholar
  91. Ren, J. S., Niu, B. G., Liu, Z. G., 1999. Soft Collision, Superposition Orogeny and Polycyclic Suturing. Earth Science Frontiers, 6(3): 85–93 (in Chinese with English Abstract)Google Scholar
  92. Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1–64Google Scholar
  93. Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1): 41–59. https://doi.org/10.1007/bf00311184Google Scholar
  94. Scherer, E., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683–687. https://doi.org/10.1126/science.1061372Google Scholar
  95. Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394–409. https://doi.org/10.1007/bf00307273Google Scholar
  96. Shi, Y., Yu, J. H., Santosh, M., 2013. Tectonic Evolution of the Qinling Orogenic Belt, Central China: New Evidence from Geochemical, Zircon UPb Geochronology and Hf Isotopes. Precambrian Research, 231(5): 19–60. https://doi.org/10.1016/j.precamres.2013.03.001Google Scholar
  97. Shi, Y., Yu, J. H., Xu, X. S., et al., 2009. Geoehrenology and Geochemistry of the Qinling Group in the Eastern Qinling Orogen. Acta Petrologica Sinica, 25(10): 2651–2670 (in Chinese with English Abstract)Google Scholar
  98. Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115–125. https://doi.org/10.1016/s0012-821x(00)00236-3Google Scholar
  99. Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263–281. https://doi.org/10.1007/s004100050155Google Scholar
  100. Streck, M. J., Leeman, W. P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351. https://doi.org/10.1130/g23286a.1Google Scholar
  101. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19Google Scholar
  102. Sun, W. D., Li, S. G., Chen, Y. D., et al., 2002. Timing of Synorogenic Granitoids in the South Qinling, Central China: Constraints on the Evolution of the Qinling-Dabie Orogenic Belt. The Journal of Geology, 110(4): 457–468. https://doi.org/10.1086/340632Google Scholar
  103. Sun, Y., Lu, X., Han, S., et al., 1996. Composition and Formation of Paleozoic Erlangping Ophiolitic Slab, North Qinling: Evidence from Geology and Geochemistry. Science in China Series D: Earth Sciences, 39(Sl): 50–59Google Scholar
  104. Sun, W. D., Li, S. G., Sun, Y., et al., 1996. Chronology and Geochemistry of a Lava Pillow in the Erlangping Group at Xixia in the Northern Qinling Mountains. Geological Review, 42(6): 144–153 (in Chinese with English Abstract)Google Scholar
  105. Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533–556. https://doi.org/10.1016/s0016-7037(98)00274-9Google Scholar
  106. Vervoort, J. D., Patchett, P. J., 1996. Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717–3733. https://doi.org/10.1016/0016-7037(96)00201-3Google Scholar
  107. Wan, Y. S., Liu, D. Y., Dong, C. Y., et al., 2011. SHRIMP Zircon Dating of Meta-Sedimentary Rock from the Qinling Group in the North of Xixia, North Qinling Orogenic Belt: Constraints on Complex Histories of Source Region and Timing of Deposition and Metamorphism. Acta Petrologica Sinica, 27(4): 1172–1178 (in Chinese with English Abstract)Google Scholar
  108. Wang, H., Wu, Y. B., Gao, S., et al., 2011. Eclogite Origin and Timings in the North Qinling Terrane, and Their Bearing on the Amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 29(9): 1019–1031. https://doi.org/10.1111/j.1525-1314.2011.00955.xGoogle Scholar
  109. Wang, H., Wu, Y. B., Gao, S., et al., 2013. Continental Origin of Eclogites in the North Qinling Terrane and Its Tectonic Implications. Precambrian Research, 230: 13–30. https://doi.org/10.1016/j.precamres.2012.12.010Google Scholar
  110. Wang, H., Wu, Y. B., Gao, S., et al., 2014a. Deep Subduction of Continental Crust in Accretionary Orogen: Evidence from U-Pb Dating on Diamond-Bearing Zircons from the Qinling Orogen, Central China. Lithos, 190/191(3): 420–429. https://doi.org/10.1016/j.lithos.2013.12.021Google Scholar
  111. Wang, H., Wu, Y. B., Li, C. R., et al., 2014b. Recycling of Sediment into the Mantle Source of K-Rich Mafic Rocks: Sr-Nd-Hf-O Isotopic Evidence from the Fushui Complex in the Qinling Orogen. Contributions to Mineralogy and Petrology, 168(4): 1–19. https://doi.org/10.1007/s00410-014-1062-yGoogle Scholar
  112. Wang, H., Wu, Y. B., Gao, S., et al., 2016. Continental Growth through Accreted Oceanic Arc: Zircon Hf-O Isotope Evidence for Granitoids from the Qinling Orogen. Geochimica et Cosmochimica Acta, 182: 109–130. https://doi.org/10.13039/501100001809Google Scholar
  113. Wang, Q., Wyman, D. A., Xu, J. F., et al., 2006. Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China): Implications for Geodynamics and Cu-Au Mineralization. Lithos, 89(3/4): 424–446. https://doi.org/10.1016/j.lithos. 2005.12.010Google Scholar
  114. Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. The Journal of Geology, 115(2): 149–161. https://doi.org/10.1086/510643Google Scholar
  115. Wang, Q., Xu, J. F., Jian, P., et al., 2005. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119–144. https://doi.org/10.1093/petrology/egi070Google Scholar
  116. Wang, T., Hu, N. G., Pei, X. Z., et al., 1997. The Composition, Tectonic Framework and Evolution of Qinling Complex, Central China. Acta Geoscientia Sinica, 18(4): 345–351 (in Chinese with English Abstract)Google Scholar
  117. Wang, T., Wang, X. X., Li, W. P., 2000. Evaluation of Multiple Emplacement Mechanisms: The Huichizi Granite Pluton, Qinling Orogenic Belt, Central China. Journal of Structural Geology, 22(4): 505–518. https://doi.org/10.1016/s0191-8141(99)00169-8Google Scholar
  118. Wang, T., Wang, X. X., Tian, W., et al., 2009. North Qinling Paleozoic Granite Associations and Their Variation in Space and Time: Implications for Orogenic Processes in the Orogens of Central China. Science in China Series D: Earth Sciences, 52(9): 1359–1384. https://doi.org/10.1007/s11430-009-0129-5Google Scholar
  119. Wang, X. X., Wang, T., Zhang, C. L., 2013. Neoproterozoic, Paleozoic, and Mesozoic Granitoid Magmatism in the Qinling Orogen, China: Constraints on Orogenic Process. Journal of Asian Earth Sciences, 72(4): 129–151. https://doi.org/10.1016/j.jseaes.2012.11.037Google Scholar
  120. Wang, X. X., Wang, T., Zhang, C. L., 2015. Granitoid Magmatism in the Qinling Orogen, Central China and Its Bearing on Orogenic Evolution. Science China: Earth Sciences, 58(9): 1497–1512. https://doi.org/10.1007/s11430-015-5150-2Google Scholar
  121. Wareham, C. D., Millar, I. L., Vaughan, A. P. M., 1997. The Generation of Sodic Granite Magmas, Western Palmer Land, Antarctic Peninsula. Contributions to Mineralogy and Petrology, 128(1): 81–96. https://doi.org/10.1007/s004100050295Google Scholar
  122. Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.xGoogle Scholar
  123. Wolde, B., Team, G. G. G., 1996. Tonalite-Trondhjemite-Granite Genesis by Partial Melting of Newly Underplated Basaltic Crust: An Example from the Neoproterozoic Birbir Magmatic Arc, Western Ethiopia. Precambrian Research, 76(1/2): 3–14. https://doi.org/10.1016/0301-9268(95)00016-xGoogle Scholar
  124. Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369–383. https://doi.org/10.1007/bf00320972Google Scholar
  125. Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217–1238 (in Chinese with English Abstract)Google Scholar
  126. Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003Google Scholar
  127. Wu, Y. B., Hanchar, J. M., Gao, S., et al., 2009. Age and Nature of Eclogites in the Huwan Shear Zone, and the Multi-Stage Evolution of the Qinling-Dabie-Sulu Orogen, Central China. Earth and Planetary Science Letters, 277(3/4): 345–354. https://doi.org/10.1016/j.epsl.2008.10.031Google Scholar
  128. Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402–1428. https://doi.org/10.13039/501100002855Google Scholar
  129. Xiong, X. L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945–948. https://doi.org/10.1130/g22711a.1Google Scholar
  130. Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3/4): 339–359. https://doi.org/10.1016/j.chemgeo.2005.01.014Google Scholar
  131. Xiong, X. L., Adam, J., Green, T. H., et al., 2006. Trace Element Characteristics of Partial Melts Produced by Melting of Metabasalts at High Pressures: Constraints on the Formation Condition of Adakitic Melts. Science in China Series D: Earth Sciences, 49(9): 915–925. https://doi.org/10.1007/s11430-006-0915-2Google Scholar
  132. Xiong, X. L., Keppler, H., Audétat, A., et al., 2011. Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt. Geochimica et Cosmochimica Acta, 75(7): 1673–1692. https://doi.org/10.1016/j.gca.2010.06.039Google Scholar
  133. Xiong, X. L., Keppler, H., Audétat, A., et al., 2009. Experimental Constraints on Rutile Saturation during Partial Melting of Metabasalt at the Amphibolite to Eclogite Transition, with Applications to TTG Genesis. American Mineralogist, 94(8/9): 1175–1186. https://doi.org/10.2138/am.2009.3158Google Scholar
  134. Xu, B., Grove, M., Wang, C. Q., et al., 2000. 40Ar/39Ar Thermochronology from the Northwestern Dabie Shan: Constraints on the Evolution of Qinling-Dabie Orogenic Belt, East-Central China. Tectonophysics, 322(3/4): 279–301. https://doi.org/10.1016/s0040-1951(00)00092-5Google Scholar
  135. Xue, F., Lerch, M. F., Kröner, A., et al., 1996. Tectonic Evolution of the East Qinling Mountains, China, in the Palaeozoic: A Review and New Tectonic Model. Tectonophysics, 253(3/4): 271–284. https://doi.org/10.1016/0040-1951(95)00060-7Google Scholar
  136. Yan, Q. R., Wang, Z. Q., Yan, Z., et al., 2009. Tectonic Affinity and Timing of Two Types of Amphibolites within the Qinling Group, North Qinling Orogenic Belt. Acta Petrologica Sinica, 25(9): 2177–2194 (in Chinese with English Abstract)Google Scholar
  137. Yan, Z., Wang, Z. Q., Yan, Q. R., et al., 2006a. Devonian Sedimentary Environments and Provenance of the Qinling Orogen: Constraints on Late Paleozoic Southward Accretionary Tectonics of the North China Craton. International Geology Review, 48(7): 585–618. https://doi.org/10.2747/0020-6814.48.7.585Google Scholar
  138. Yan, Z., Wang, Z., Wang, T., et al., 2006b. Provenance and Tectonic Setting of Clastic Deposits in the Devonian Xicheng Basin, Qinling Orogen, Central China. Journal of Sedimentary Research, 76(3): 557–574. https://doi.org/10.2110/jsr.2006.046Google Scholar
  139. Yang, J. S., Liu, F. L., Wu, C., et al., 2005. Two Ultrahigh-Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons. International Geology Review, 47(4): 327–343. https://doi.org/10.2747/0020-6814.47.4.327Google Scholar
  140. Yang, J. S., Xu, Z. Q., Dobrzhinetskaya, L. F., et al., 2003. Discovery of Metamorphic Diamonds in Central China: An Indication of a >4 000-km-Long Zone of Deep Subduction Resulting from Multiple Continental Collisions. Terra Nova, 15(6): 370–379. https://doi.org/10.1046/j.1365-3121.2003.00511.xGoogle Scholar
  141. Yang, J. S., Xu, Z. Q., Pei, X. Z., et al., 2002. Discovery of Diamond in North Qinling: Evidence for a Giant UHPM Belt across Central China and Recognition of Paleozoic and Mesozoic Dual Deep Subduction between North China and Yangtze Plates. Acta Geologica Sinica, 76(4): 484–495 (in Chinese with English Abstract)Google Scholar
  142. Yang, L., Chen, F. K., Yang, Y. Z., et al., 2010. Zircon U-Pb Ages of the Qinling Group in Danfeng Area: Recording Mesoproterozoic and Neoproterozoic Magmatism and Early Paleozoic Metamorphism in the North Qinling Terrain. Acta Petrologica Sinica, 26(5): 1589–1603 (in Chinese with English Abstract)Google Scholar
  143. Yu, H., Zhang, H. F., Li, X. H., et al., 2016. Tectonic Evolution of the North Qinling Orogen from Subduction to Collision and Exhumation: Evidence from Zircons in Metamorphic Rocks of the Qinling Group. Gondwana Research, 30(1): 65–78. https://doi.org/10.1016/j.gr.2015.07.003Google Scholar
  144. Zhai, X. M., Day, H. W., Hacker, B. R., et al., 1998. Paleozoic Metamorphism in the Qinling Orogen, Tongbai Mountains, Central China. Geology, 26(4): 371. https://doi.org/10.1130/0091-7613(1998)026<0371:pmitqo>2.3.co;2Google Scholar
  145. Zhang, B. R., Zhang, H. F., Zhao, Z. D., et al., 1996. Geochemical Subdivision and Evolution of the Lithosphere in East Qinling and Adjacent Regions-Implications for Tectonics. Science in China Series D: Earth Sciences, 39(3): 245–255 (in Chinese with English Abstract)Google Scholar
  146. Zhang, C. L., Liu, L., Wang, T., et al., 2013. Granitic Magmatism Related to Early Paleozoic Continental Collision in North Qinling. Chinese Science Bulletin, 58(35): 4405–4410. https://doi.org/10.1007/s11434-013-6064-zGoogle Scholar
  147. Zhang, C. L., Liu, L., Zhang, G. W., et al., 2004. Determination of Neoproterozoic Post-Collisional Granites in the North Qinling Mountains and Its Tectonic Significance. Earth Science Frontiers, 11(3): 33–42 (in Chinese with English Abstract)Google Scholar
  148. Zhang, C. L., Zhang, G. W., Yan, Y. X., et al., 2005. Origin and Dynamic Significance of Guangtoushan Granitic Plutons to the North of Mianlue Zone in Southern Qinling. Acta Petrologica Sinica, 21(3): 711–720 (in Chinese with English Abstract)Google Scholar
  149. Zhang, G. B., Niu, Y. L., Song, S. G., et al., 2015. Trace Element Behavior and P-T-t Evolution during Partial Melting of Exhumed Eclogite in the North Qaidam UHPM Belt (NW China): Implications for Adakite Genesis. Lithos, 226: 65–80. https://doi.org/10.13039/501100001809Google Scholar
  150. Zhang, G. W., 1988. Formation and Evolution of the Qinling Orogen. Northwest University Press, Xi’an. 1–192 (in Chinese with English Abstract)Google Scholar
  151. Zhang, G. W., Dong, Y. P., Lai, S. C., et al., 2004. Mianlue Tectonic Zone and Mianlue Suture Zone on Southern Margin of Qinling-Dabie Orogenic Belt. Science in China Series D: Earth Sciences, 47(4): 300–316. https://doi.org/10.1360/02yd0526Google Scholar
  152. Zhang, G. W., Meng, Q. R., Lai, S. C., 1995. Tectonics and Structure of the Qinling Orogenic Belt. Science in China: Series B, 11(38): 1379–1394 (in Chinese with English Abstract)Google Scholar
  153. Zhang, G. W., Meng, Q. R., Yu, Z. P., et al., 1996. Orogenesis and Dynamics of Qinling Orogen. Science in China Series D: Earth Sciences, 26(3): 193–200 (in Chinese with English Abstract)Google Scholar
  154. Zhang, G. W., Zhang, B. R., Yuan, X. C., et al., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing (in Chinese with English Abstract)Google Scholar
  155. Zhang, H. F., Zhang, B. R., Luo, T. S., 1994. Discussion on the Source of the Materials of the Huichizi Granite Pluton in Northern Qinling Mountains, China. Journal of Mineralogy and Petrology, 14(1): 67–73 (in Chinese with English Abstract)Google Scholar
  156. Zhang, Z. Q., Liu, D. Y., Fu, G. M., 1994. Isotopic Geochronology of Metamorphic Strata in North Qinling. Geological Publishing House, Beijing (in Chinese with English Abstract)Google Scholar
  157. Zhang, Z. Q., Zhang, G. W., Liu, D. Y., et al., 2006. Isotopic Geochoronology and Geochemistry of Ophiolites, Granites and Clasti Sedimentary Rocks in the Qinling-Dabie Orogenic Belt. Geological Publishing House, Beijing (in Chinese)Google Scholar
  158. Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 1999. Age of the Shahewan Rapakivi Granite in the Qinling Orogen, China, and Its Constraints on the End Time of the Main Orogenic Stage of this Orogen. Chinese Science Bulletin, 44(21): 2001–2004. https://doi.org/10.1007/bf02887128Google Scholar
  159. Zheng, Y. F., Zhang, L. F., McClelland, W. C., et al., 2012. Processes in Continental Collision Zones: Preface. Lithos, 136–139(4): 1–9. https://doi.org/10.1016/j.lithos.2011.11.020Google Scholar
  160. Zhou, Z. J., Mao, S. D., Chen, Y. J., et al., 2016. U-Pb Ages and Lu-Hf Isotopes of Detrital Zircons from the Southern Qinling Orogen: Implications for Precambrian to Phanerozoic Tectonics in Central China. Gondwana Research, 35(4): 323–337. https://doi.org/10.13039/501100001809Google Scholar
  161. Zhu, X. Y., Chen, F. K., Li, S. Q., et al., 2011. Crustal Evolution of the North Qinling Terrain of the Qinling Orogen, China: Evidence from Detrital Zircon U-Pb Ages and Hf Isotopic Composition. Gondwana Research, 20(1): 194–204. https://doi.org/10.1016/j.gr.2010.12.009Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Ore Deposit GeochemistryChinese Academy of SciencesGuiyangChina

Personalised recommendations