Journal of Earth Science

, Volume 28, Issue 3, pp 545–554 | Cite as

Relationship between landslides and active normal faulting in the epicentral area of the AD 1556 M~8.5 Huaxian Earthquake, SE Weihe Graben (Central China)

Hydrogeology and Geo-hazards


In this paper, we focus on the characteristics of the landslides developed in the epicentral area of AD 1556 M~8.5 Huaxian Earthquake, and discuss their relations to the active normal faults in the SE Weihe Graben, Central China. The results from analyzing high-resolution remote-sensing imagery and digital elevation models (DEMs), in combination with field survey, demonstrate that: (i) the landslides observed in the study area range from small-scale debris/rock falls to large-scale rock avalanches; (ii) the landslides are mostly developed upon steep slopes of ≥30°; and (iii) the step-like normalfault scarps along the range-fronts of the Huashan Mountains as well as the thick loess sediments in the Weinan area may facilitate the occurrence of large landslides. The results presented in this study would be helpful to assess the potential landslide hazards in densely-populated areas affected by active normal faulting.

Key words

landslides active normal faults Huaxian Earthquake Weihe Graben Ordos Block 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to Prof. Dong Jia, Dr. Maomao Wang and Dr. Xiaojun Wu for their field assistance and helpful discussion on an early draft. We also thank the reviewers and editors for the constructive suggestions which greatly improved the manuscript. This study was supported by the National Natural Science Foundation of China (No. 41502203), the Scientific Research Foundation for Returned Overseas Scholars of China (awarded to G. Rao), the Natural Science Foundation of Zhejiang Province (No. LY15D02001), and a Science Project (No. 23253002) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The final publication is available at Springer via


  1. Alfaro, P., Delgado, J., García-Tortosa, F. J., et al., 2012. Widespread Landslides Induced by the Mw 5.1 Earthquake of 11 May 2011 in Lorca, SESpain. Engineering Geology, 137/138: 40–52. doi:10.1016/j.enggeo.2012.04.002CrossRefGoogle Scholar
  2. Barnard, P. L., Owen, L. A., Sharma, M. C., et al., 2001. Natural and Human-Induced Landsliding in the Garhwal Himalaya of Northern India. Geomorphology, 40(1/2): 21–35. doi:10.1016/s0169-555x(01)00035-6CrossRefGoogle Scholar
  3. Carbonel, D., Gutiérrez, F., Linares, R., et al., 2013. Chain, N Spain). Geomorphology, 189: 93–108. doi:10.1016/j.geomorph.2013.01.020CrossRefGoogle Scholar
  4. Chigira, M., Wu, X. Y., Inokuchi, T., et al., 2010. Landslides Induced by the 2008 Wenchuan Earthquake, Sichuan, China. Geomorphology, 118(3/4): 225–238. doi:10.1016/j.geomorph.2010.01.003CrossRefGoogle Scholar
  5. Chuang, S. C., Chen, H., Lin, G. W., et al., 2009. Increase in Basin Sediment Yield from Landslides in Storms Following Major Seismic Disturbance. Engineering Geology, 103(1/2): 59–65. doi:10.1016/j.enggeo.2008.08.001CrossRefGoogle Scholar
  6. CENC (China Earthquakes Network Center), 2007. The 1556 Huaxian Great Earthquake, Shaanxi, China: The Largest Total of Fatalities ever Claimed. [2016-03-15]. 01/_history/hxz/qyzhenhai/zh20060609002.htm (in Chinese)Google Scholar
  7. Close, U., McCormick, E., 1922. Where the Mountains Walked. The National Geographic Magazine, 41: 445–472Google Scholar
  8. Dadson, S. J., Hovius, N., Chen, H., et al., 2004. Earthquake-Triggered Increase in Sediment Delivery from an Active Mountain Belt. Geology, 32(8): 733. doi:10.1130/g20639.1CrossRefGoogle Scholar
  9. Dai, F. C., Xu, C., Yao, X., et al., 2011a. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883–895. doi:10.1016/j.jseaes.2010.04.010CrossRefGoogle Scholar
  10. Dai, F. C., Tu, X. B., Xu, C., et al., 2011b. Rock Avalanches Triggered by Oblique-Thrusting during the 12 May 2008 Ms 8.0 Wenchuan Earthquake, China. Geomorphology, 132(3/4): 300–318. doi:10.1016/j.geomorph.2011.05.016CrossRefGoogle Scholar
  11. Das, J. D., Saraf, A. K., Panda, S., 2007. Satellite Data in a Rapid Analysis of Kashmir Earthquake (October 2005) Triggered Landslide Pattern and River Water Turbidity in and around the Epicentral Region. International Journal of Remote Sensing, 28(8): 1835–1842. doi:10.1080/01431160600954720CrossRefGoogle Scholar
  12. Deng, Q., 2007. Active Tectonics Map of China. Seismological Press, Beijing (in Chinese)Google Scholar
  13. Deng, Q., Zhang, P., Ran, Y., et al., 2003. Basic Characteristics of Active Tectonics of China. Science in China Series D: Earth Sciences, 46: 356–372.Google Scholar
  14. Densmore, A. L., Ellis, M. A., Anderson, R. S., 1998. Landsliding and the Evolution of Normal-Fault-Bounded Mountains. Journal of Geophysical Research: Solid Earth, 103(B7): 15203–15219. doi:10.1029/98jb00510CrossRefGoogle Scholar
  15. Derbyshire, E., 2001. Geological Hazards in Loess Terrain, with Particular Reference to the Loess Regions of China. Earth-Science Reviews, 54(1/2/3): 231–260. doi:10.1016/s0012-8252(01)00050-2CrossRefGoogle Scholar
  16. Digital Globe Inc., 2016. Content Collection/Satellites. [2016-03-15]. Scholar
  17. Du, J., Li, D., Ma, Y., et al., 2013. The High-Speed and Long-Distance Ancient Landslides before 187 ka: the Evidence from the OSL Dating of the Loess Overlying the Landslide Body of Lianhuasi Landslides in Huaxian, Shaanxi Province, China. Quaternary Sciences, 33: 1005–1015 (in Chinese with English Abstract)Google Scholar
  18. Feng, X. J., Dai, W. Q., 2004. Lateral Migration of Fault Activity in Weihe Basin. Acta Seismologica Sinica, 17(2): 190–199. doi:10.1007/bf02896933CrossRefGoogle Scholar
  19. Fujisawa, K., Marcato, G., Nomura, Y., et al., 2010. Management of a Typhoon-Induced Landslide in Otomura (Japan). Geomorphology, 124(3/4): 150–156. doi:10.1016/j.geomorph.2010.09.027CrossRefGoogle Scholar
  20. Gori, S., Falcucci, E., Dramis, F., et al., 2014. Deep-Seated Gravitational Slope Deformation, Large-Scale Rock Failure, and Active Normal Faulting along Mt. Morrone (Sulmona Basin, Central Italy): Geomorphological and Paleoseismological Analyses. Geomorphology, 208: 88–101. doi:10.1016/j.geomorph.2013.11.017Google Scholar
  21. Gorum, T., Korup, O., van Westen, C. J., et al., 2014. Why so Few? Landslides Triggered by the 2002 Denali Earthquake, Alaska. Quaternary Science Reviews, 95: 80–94. doi:10.1016/j.quascirev.2014.04.032CrossRefGoogle Scholar
  22. Harp, E. L., Jibson, R. W., 1996. Landslides Triggered by the 1994 Northridge, California, Earthquake. Bulletin of Seismological Society of American, 86: 319–332Google Scholar
  23. Has, B., Noro, T., Maruyama, K., et al., 2012. Characteristics of Earthquake-Induced Landslides in a Heavy Snowfall Region—Landslides Triggered by the Northern Nagano Prefecture Earthquake, March 12, 2011, Japan. Landslides, 9(4): 539–546. doi:10.1007/s10346-012-0344-6CrossRefGoogle Scholar
  24. He, M., 1986. The Great 1556 Huaxian Earthquake and the Related Faulting. Journal Seismological Research, 9: 427–432 (in Chinese with English Abstract)Google Scholar
  25. Highland, L. M., Bobrowsky, P., 2008. The Landslide Handbook—A Guide to Understanding Landslides. U.S. Geological Survey Circular, 1325: 129Google Scholar
  26. Huang, R., Chan, L., 2004. Human-Induced Landslides in China: Mechanism Study and Its Implications on Slope Management. Chinese Journal of Rock Mechanics and Engineering, 23: 2766–2777Google Scholar
  27. Jibson, R. W., 2009. Using Landslides for Paleoseismic Analysis. In: McCalpin, J. P., ed., Paleoseismology. International Geophysical Series,95: 565–601CrossRefGoogle Scholar
  28. Jibson, R. W., Harp, E. L., Schulz, W., et al., 2004. Landslides Triggered by the 2002 Denali Fault, Alaska, Earthquake and the Inferred Nature of the Strong Shaking. Earthquake Spectra, 20(3): 669–691. doi:10.1193/1.1778173CrossRefGoogle Scholar
  29. Jibson, R. W., Keefer, D. K., 1993. Analysis of the Seismic Origin of Landslides: Examples from the New Madrid Seismic Zone. Geological Society of America Bulletin, 105(4): 521–536. doi:10.1130/0016- 7606(1993)105<0521:aotsoo>;2CrossRefGoogle Scholar
  30. Jibson, R. W., Keefer, D. K., 1989. Statistical Analysis of Factors Affecting Landslide Distribution in the New Madrid Seismic Zone, Tennessee and Kentucky. Engineering Geology, 27(1/2/3/4): 509–542. doi:10.1016/0013-7952(89)90044-6CrossRefGoogle Scholar
  31. Keefer, D. K., 2000. Statistical Analysis of an Earthquake-Induced Landslide Distribution—The 1989 Loma Prieta, California Event. Engineering Geology, 58(3/4): 231–249. doi:10.1016/s0013-7952(00)00037-5CrossRefGoogle Scholar
  32. Keefer, D. K., 1994. The Importance of Earthquake-Induced Landslides to Long-Term Slope Erosion and Slope-Failure Hazards in Seismically Active Regions. Geomorphology, 10(1/2/3/4): 265–284. doi:10.1016/0169-555x(94)90021-3CrossRefGoogle Scholar
  33. Keefer, D. K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95: 406–421CrossRefGoogle Scholar
  34. Korup, O., 2004. Geomorphic Implications of Fault Zone Weakening: Slope Instability along the Alpine Fault, South Westland to Fiordland. New Zealand Journal of Geology and Geophysics, 47(2): 257–267. doi:10.1080/00288306.2004.9515052CrossRefGoogle Scholar
  35. Kuo, T., 1957. On the Shensi Earthquake of January 23, 1556. Acta Geophysica Sinica, 6: 59–68 (in Chinese with English Abstract)Google Scholar
  36. Lenti, L., Martino, S., 2012. The Interaction of Seismic Waves with Step-Like Slopes and Its Influence on Landslide Movements. Engineering Geology, 126: 19–36. doi:10.1016/j.enggeo.2011.12.002CrossRefGoogle Scholar
  37. Li, Z., Cui, P., 2007. The Secondary Disasters of Great Huaxian Earthquake in 1556. Journal of Mountain Sciences, 25: 425–430 (in Chinese with English Abstract)Google Scholar
  38. Li, X., Ran, Y., 1983. Active Faults at Northern Front of the Huashan and Weinan Loess Tableland. North China Earthquake Science, 1: 10–18 (in Chinese with English Abstract)Google Scholar
  39. Liu, J. H., Zhang, P. Z., Lease, R. O., et al., 2013. Eocene Onset and Late Miocene Acceleration of Cenozoic Intracontinental Extension in the North Qinling Range-Weihe Graben: Insights from Apatite Fission Track Thermochronology. Tectonophysics, 584: 281–296. doi:10.1016/j.tecto.2012.01.025CrossRefGoogle Scholar
  40. Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183–196. doi:10.1016/s0040-1951(00)00106-2CrossRefGoogle Scholar
  41. Meunier, P., Hovius, N., Haines, J. A., 2008. Topographic Site Effects and the Location of Earthquake Induced Landslides. Earth and Planetary Science Letters, 275(3/4): 221–232. doi:10.1016/j.epsl.2008.07.020CrossRefGoogle Scholar
  42. Meunier, P., Hovius, N., Haines, A. J., 2007. Regional Patterns of Earthquake-Triggered Landslides and Their Relation to Ground Motion. Geophysical Research Letters, 34(20): L20408. doi:10.1029/2007gl031337CrossRefGoogle Scholar
  43. Moro, M., Saroli, M., Gori, S., et al., 2012. The Interaction between Active Normal Faulting and Large Scale Gravitational Mass Movements Revealed by Paleoseismological Techniques: A Case Study from Central Italy. Geomorphology, 151/152: 164–174. doi:10.1016/j.geomorph.2012.01.026CrossRefGoogle Scholar
  44. Osmundsen, P. T., Henderson, I., Lauknes, T. R., et al., 2009. Active Normal Fault Control on Landscape and Rock-Slope Failure in Northern Norway. Geology, 37(2): 135–138. doi:10.1130/g25208a.1CrossRefGoogle Scholar
  45. Owen, L. A., Kamp, U., Khattak, G. A., et al., 2008. Landslides Triggered by the 8 October 2005 Kashmir Earthquake. Geomorphology, 94(1/2): 1–9. doi:10.1016/j.geomorph.2007.04.007CrossRefGoogle Scholar
  46. Rao, G., Lin, A. M., Yan, B., 2015. Paleoseismic Study on Active Normal Faults in the Southeastern Weihe Graben, Central China. Journal of Asian Earth Sciences, 114: 212–225. doi:10.13039/501100001700CrossRefGoogle Scholar
  47. Rao, G., Lin, A. M., Yan, B., et al., 2014. Tectonic Activity and Structural Features of Active Intracontinental Normal Faults in the Weihe Graben, Central China. Tectonophysics, 636: 270–285. doi:10.13039/501100001700CrossRefGoogle Scholar
  48. Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53. doi:10.1016/s0040-1951(03)00053-2CrossRefGoogle Scholar
  49. Ren, Z. K., Zhang, Z. Q., Dai, F. C., et al., 2014a. Topographic Changes Due to the 2008 Mw 7.9 Wenchuan Earthquake as Revealed by the Differential DEM Method. Geomorphology, 217: 122–130. doi:10.1016/j.geomorph.2014.04.020CrossRefGoogle Scholar
  50. Ren, Z. K., Zhang, Z. Q., Yin, J. H., et al., 2014b. Morphogenic Uncertainties of the 2008 Wenchuan Earthquake: Generating or Reducing?. Journal of Earth Science, 25(4): 668–675. doi:10.1007/s12583-014-0456-0CrossRefGoogle Scholar
  51. Ren, Z. K., Zhang, Z. Q., Dai, F. C., et al., 2013. Co-Seismic Landslide Topographic Analysis Based on Multi-Temporal DEM—A Case Study of the Wenchuan Earthquake. Springer Plus, 2(1): 544. doi:10.1186/2193-1801-2-544CrossRefGoogle Scholar
  52. Ren, Z. K., Lin, A. M., 2010. Co-Seismic Landslides Induced by the 2008 Wenchuan Magnitude 8.0 Earthquake, as Revealed by ALOS PRISM and AVNIR2 Imagery Data. International Journal of Remote Sensing, 31(13): 3479–3493. doi:10.1080/01431161003727770CrossRefGoogle Scholar
  53. Shaanxi Earthquake Information Network (SEIN), 2011. Historical Earthquakes in Shaanxi Province. [2016-03-15]. 001f/sxlsdz/index.html (in Chinese)Google Scholar
  54. Sepúlveda, S. A., Murphy, W., Jibson, R. W., et al., 2005. Seismically Induced Rock Slope Failures Resulting from Topographic Amplification of Strong Ground Motions: The Case of Pacoima Canyon, California. Engineering Geology, 80(3/4): 336–348. doi:10.1016/j.enggeo.2005.07.004CrossRefGoogle Scholar
  55. Solonenko, V. P., 1977. Landslides and Collapses in Seismic Zones and Their Prediction. Bulletin of the International Association of Engineering Geology, 15(1): 4–8. doi:10.1007/bf02592633CrossRefGoogle Scholar
  56. State Seismological Bureau (SSB), 1988. Active Faults around the Ordos. Seismological Press, Beijing. 335 (in Chinese)Google Scholar
  57. Tian, Y. Y., Xu, C., Xu, X. W., et al., 2016. Detailed Inventory Mapping and Spatial Analyses to Landslides Induced by the 2013 Ms 6.6 Minxian Earthquake of China. Journal of Earth Science, 27(6): 1016–1026. doi:10.1007/s12583-016-0905-zCrossRefGoogle Scholar
  58. Tsou, C. Y., Feng, Z. Y., Chigira, M., 2011. Catastrophic Landslide Induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology, 127(3/4): 166–178. doi:10.1016/j.geomorph.2010.12.013CrossRefGoogle Scholar
  59. Wang, W. N., Nakamura, H., Tsuchiya, S., et al., 2002. Distributions of Landslides Triggered by the Chi-Chi Earthquake in Central Taiwan on September 21, 1999. Landslides, 38(4): 318–326. doi:10.3313/jls1964.38.4_318CrossRefGoogle Scholar
  60. Xie, Y., 1992. On Magnitude of 1556 Guanzhong Great Earthquake. Journal of Catastrophology, 7: 10–13 (in Chinese with English Abstract)Google Scholar
  61. Xu, C., Xu, X. W., Tian, Y. Y., et al., 2016. Two Comparable Earthquakes Produced Greatly Different Coseismic Landslides: The 2015 Gorkha, Nepal and 2008 Wenchuan, China Events. Journal of Earth Science, 27(6): 1008–1015. doi:10.1007/s12583-016-0684-6CrossRefGoogle Scholar
  62. Xu, C., Xu, X. W., Yu, G. H., 2013. Landslides Triggered by Slipping-Fault-Generated Earthquake on a Plateau: An Example of the 14 April 2010, Ms 7.1, Yushu, China Earthquake. Landslides, 10(4): 421–431. doi:10.1007/s10346-012-0340-xCrossRefGoogle Scholar
  63. Xu, C., Xu, X. W., Shyu, J. B. H., 2015. Database and Spatial Distribution of Landslides Triggered by the Lushan, China Mw 6.6 Earthquake of 20 April 2013. Geomorphology, 248: 77–92. doi:10.1016/j.geomorph.2015.07.002CrossRefGoogle Scholar
  64. Xu, C., Xu, X. W., 2014. Statistical Analysis of Landslides Caused by the Mw 6.9 Yushu, China, Earthquake of April 14, 2010. Natural Hazards, 72(2): 871–893. doi:10.1007/s11069-014-1038-2CrossRefGoogle Scholar
  65. Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (Nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441–461. doi:10.1007/s10346-013-0404-6CrossRefGoogle Scholar
  66. Xu, X., Zhang, H., Deng, Q., 1988. The Paleoearthquake Traces on Huashan Front Fault Zone in Weihe Basin and Its Earthquake Intervals. Seismology and Geology, 10: 206 (in Chinese with English Abstract)Google Scholar
  67. Yin, G. M., Lu, Y. C., Zhao, H., et al., 2001. The Tectonic Uplift of the Hua Shan in the Cenozoic. Chinese Science Bulletin, 46(19): 1665–1668. doi:10.1007/bf02900632CrossRefGoogle Scholar
  68. Yuan, T., Feng, X., 2010. The 1556 Huaxian Great Earthquake. Seismological Press, Beijing. 386 (in Chinese)Google Scholar
  69. Zhang, D. X., Wang, G. H., 2007. Study of the 1920 Haiyuan Earthquake-Induced Landslides in Loess (China). Engineering Geology, 94(1/2): 76–88. doi:10.1016/j.enggeo.2007.07.007CrossRefGoogle Scholar
  70. Zhang, Y. Q., Mercier, J. L., Vergé ly, P., 1998. Extension in the Graben Systems around the Ordos (China), and Its Contribution to the Extrusion Tectonics of South China with Respect to Gobi-Mongolia. Tectonophysics, 285(1/2): 41–75. doi:10.1016/s0040-1951(97)00170-4Google Scholar
  71. Zhang, A. L., Yang, Z. T., Zhong, J., et al., 1995. Characteristics of Late Quaternary Activity along the Southern Border Fault Zone of Weihe Graben Basin. Quaternary International, 25: 25–31. doi:10.1016/1040-6182(94)p3715-kCrossRefGoogle Scholar
  72. Zhou, Q., 2010. Ancient Landslide at the Pediment of the Qinling Mountains near Lianhuasi, Hua County, Shaanxi Province. Journal of Shaanxi Institute of Education, 26: 86–99 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Earth SciencesZhejiang UniversityHangzhouChina
  2. 2.Department of Geophysics, Graduate School of ScienceKyoto UniversityKyotoJapan
  3. 3.School of Earth Sciences and EngineeringNanjing UniversityNanjingChina

Personalised recommendations