Impact and Solutions of Seawater Heterogeneity on Wide-Angle Tomographic Inversion of Crustal Velocities in Deep Marine Environments—Numerical Studies

Abstract

The seawater column is typically taken as a homogeneous velocity layer in wide-angle crustal seismic surveys in marine environments. However, heterogeneities in salinity and temperature throughout the seawater layer result insignificant lateral variations in its seismic velocity, especially in deep marine environments. Failure to compensate for these velocity inhomogeneities will introduce significant artifacts in constructing crustal velocity models using seismic tomography. In this study, we conduct numerical experiments to investigate the impact of heterogeneous seismic velocities in seawater on tomographic inversion for crustal velocity models. Experiments that include lateral variation in seawater velocity demonstrated that the modeled crustal velocities were contaminated by artifacts from tomographic inversions when assuming a homogeneous water layer. To suppress such artifacts, we propose two strategies: 1) simultaneous inversion of water velocities and the crustal velocities; 2) layer-stripping inversion during which to first invert for seawater velocity and then correct the travel times before inverting for crustal velocities. The layer-stripping inversion significantly improves the modeling of variation in seawater velocity when preformed with seismic sensors deployed on the ocean bottom and in the water column. Such strategies improve crustal modeling via wide-angle seismic surveys in deep-marine environment.

This is a preview of subscription content, log in to check access.

References Cited

  1. Armi, L., Hebert, D., Oakey, N., et al., 1989. Two Years in the Life of a Mediterranean Salt Lens. Journal of Physical Oceanography, 19(3): 354–370. https://doi.org/10.1175/1520-0485(1989)019〈0354:tyitlo〉2.0.co;2

    Article  Google Scholar 

  2. Bertrand, A., MacBeth, C., 2003. Seawater Velocity Variations and Real-Time Reservoir Monitoring. The Leading Edge, 22(4): 351–355. https://doi.org/10.1190/1.1572089

    Article  Google Scholar 

  3. Bian, A. F., Yu, W. H., 2011. Layer-Stripping Full Waveform Inversion with Damped Seismic Reflection Data. Journal of Earth Science, 22(2): 241–249. https://doi.org/10.1007/s12583-011-0177-6

    Article  Google Scholar 

  4. Bian, A. F., Zou, Z. H., Zhou, H. W., et al., 2015. Evaluation of Multi-Scale Full Waveform Inversion with Marine Vertical Cable Data. Journal of Earth Science, 26(4): 481–486. https://doi.org/10.1007/s12583-015-0566-3

    Article  Google Scholar 

  5. Biescas, B., Sallarès, V., Pelegrí, J. L., et al., 2008. Imaging Meddy Finestructure Using Multichannel Seismic Reflection Data. Geophysical Research Letters, 35(11): L11609. https://doi.org/10.1029/2008gl033971

    Article  Google Scholar 

  6. Biescas, B., Ruddick, B. R., Nedimovic, M. R., et al., 2014. Recovery of Temperature, Salinity, and Potential Density from Ocean Reflectivity. Journal of Geophysical Research: Oceans, 119(5): 3171–3184. https://doi.org/10.1002/2013jc009662

    Google Scholar 

  7. Bornstein, G., Biescas, B., Sallarès, V., et al., 2013. Direct Temperature and Salinity Acoustic Full Waveform Inversion. Geophysical Research Letters, 40(16): 4344–4348. https://doi.org/10.1002/grl.50844

    Article  Google Scholar 

  8. Chen, H., Xie, X., Mao, K., 2015. Deep-Water Contourite Depositional System in Vicinity of Yi’tong Shoal on Northern Margin of the South China Sea. Earth Science—Journal of China University of Geosciences, 40(4): 733–743 (in Chinese with English Abstract)

    Article  Google Scholar 

  9. Eakin, D., Holbrook, W. S., Fer, I., 2011. Seismic Reflection Imaging of Large-Amplitude Lee Waves in the Caribbean Sea. Geophysical Research Letters, 38(21): L21601. https://doi.org/10.1029/2011gl049157

    Article  Google Scholar 

  10. Gailler, A., Klingelhoefer, F., Olivet, J. L., et al., 2009. Crustal Structure of a Young Margin Pair: New Results Across the Liguro–Provencal Basin from Wide-Angle Seismic Tomography. Earth and Planetary Science Letters, 286(1/2): 333–345. https://doi.org/10.1016/j.epsl.2009.07.001

    Article  Google Scholar 

  11. Han, F. X., Sun, J. G., Wang, K., 2012. The Influence of Sea Water Velocity Variation on Seismic Traveltimes, Ray Paths, and Amplitude. Applied Geophysics, 9(3): 319–325. https://doi.org/10.1007/s11770-012-0344-2

    Article  Google Scholar 

  12. Holbrook, W. S., Fer, I., Schmitt, R. W., et al., 2013. Estimating Oceanic Turbulence Dissipation from Seismic Images. Journal of Atmospheric and Oceanic Technology, 30(8): 1767–1788. https://doi.org/10.1175/jtech-d-12-00140.1

    Article  Google Scholar 

  13. Holbrook, W. S., 2003. Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling. Science, 301(5634): 821–824. https://doi.org/10.1126/science.1085116

    Article  Google Scholar 

  14. Huang, X. H., Song, H. B., Luis, M. P., et al., 2011. Ocean Temperature and Salinity Distributions Inverted from Combined Reflection Seismic and XBT Data. Chinese Journal of Geophysics, 54(3): 307–314. https://doi.org/10.1002/cjg2.1613

    Article  Google Scholar 

  15. Ji, L. L., Lin, M., 2013. Numerical Analysis of the Effect of Mesoscale Eddies on Seismic Imaging. Pure and Applied Geophysics, 170(3): 259–270. https://doi.org/10.1007/s00024-012-0497-1

    Article  Google Scholar 

  16. Liu, H., Zhou, H. W., Liu, W. G., et al., 2010. Tomographic Velocity Model Building of the near Surface with Velocity-Inversion Interfaces: A Test Using the Yilmaz Model. Geophysics, 75(6): U39–U47. https://doi.org/10.1190/1.3502665

    Article  Google Scholar 

  17. Ma, X. H., Jing, Z., Chang, P., et al., 2016. Western Boundary Currents Regulated by Interaction between Ocean Eddies and the Atmosphere. Nature, 535(7613): 533–537. https://doi.org/10.1038/nature18640

    Article  Google Scholar 

  18. MacKay, S., Fried, J., 2002. Removing Distortions Caused by Water Velocity Variations: Method for Dynamic Correction. SEG Technical Program Expanded Abstracts, 21: 2074–2077. https://doi.org/ 10.1190/1.1817110

    Google Scholar 

  19. MacKay, S., Fried, J., Carvill, C., 2003. The Impact of Water-Velocity Variations on Deepwater Seismic Data. The Leading Edge, 22(4): 344–350. https://doi.org/10.1190/1.1572088

    Article  Google Scholar 

  20. Makris, J., Papoulia, J., McPherson, S., et al., 2012. Mapping of Sediments and Crust Offshore Kenya, East Africa: A Wide Aperture Refraction/Reflection Survey. SEG Technical Program Expanded Abstracts, 31: 1–5. https://doi.org/ 10.1190/segam2012-0426.1

    Google Scholar 

  21. Moser, T. J., 1991. Shortest Path Calculation of Seismic Rays. Geophysics, 56(1): 59–67. https://doi.org/10.1190/1.1442958

    Article  Google Scholar 

  22. Richardson, P. L., Bower, A. S., Zenk, W., 2000. A Census of Meddies Tracked by Floats. Progress in Oceanography, 45(2): 209–250. https://doi.org/10.1016/s0079-6611(99)00053-1

    Article  Google Scholar 

  23. Richardson, P. L., Price, J. F., Walsh, D., et al., 1989. Tracking Three Meddies with SOFAR Floats. Journal of Physical Oceanography, 19(3): 371–383. https://doi.org/10.1175/1520-0485(1989)019〈0371:ttmwsf〉2.0.co;2

    Article  Google Scholar 

  24. Ritter, G. L. D. S., 2010. Water Velocity Estimation Using Inversion Methods. Geophysics, 75(1): U1–U8. https://doi.org/10.1190/1.3280232

    Article  Google Scholar 

  25. Song, H. B., Luis, P., Wang, D. X., et al., 2009. Seismic Images of Ocean Meso-Scale Eddies and Internal Waves. Chinese Journal of Geophysics, 52(6): 1251–1257. https://doi.org/10.1002/cjg2.1451

    Article  Google Scholar 

  26. Tian, W., He, M., Yang, Y., et al., 2015. Complex Linkage and Transformation of Boundary Faults of Northern Huizhou Sag in Pearl River Mouth Basin. Earth Science—Journal of China University of Geosciences, 40(12): 2037–2051 (in Chinese with English Abstract)

    Article  Google Scholar 

  27. Yang, Y., He, G., Zhu, K. et al., 2016. Classification of Seafloor Geological Types of Qianyu Seamount from Mid Pacific Seamounts Using Multibeam Backscatter Intensity Data. Earth Science—Journal of China University of Geosciences, 41(4): 718–728 (in Chinese with English Abstract)

    Article  Google Scholar 

  28. Zelt, C. A., 1999. Modelling Strategies and Model Assessment for Wide-Angle Seismic Traveltime Data. Geophysical Journal International, 139(1): 183–204. https://doi.org/10.1046/j.1365-246x.1999.00934.x

    Article  Google Scholar 

  29. Zhou, H. W., 1996. A High-Resolution P wave Model for the Top 1 200 km of the Mantle. Journal of Geophysical Research: Solid Earth, 101(B12): 27791–27810. https://doi.org/10.1029/96jb02487

    Article  Google Scholar 

  30. Zhou, H. W., 2003. Multiscale Traveltime Tomography. Geophysics, 68(5): 1639–1649. https://doi.org/10.1190/1.1620638

    Article  Google Scholar 

  31. Zhou, H. W., 2006. Multiscale Deformable-Layer Tomography. Geophysics, 71(3): R11–R19. https://doi.org/10.1190/1.2194519

    Article  Google Scholar 

  32. Zhou, H. W., 2011. On the Layering Artifacts in Seismic Imageries. Journal of Earth Science, 22(2): 182–194. https://doi.org/10.1007/s12583-011-0171-z

    Article  Google Scholar 

  33. Zhu, X. H., Angstman, B. G., Sixta, D. P., 1998. Overthrust Imaging with Tomo-Datuming: A Case Study. Geophysics, 63(1): 25–38. https://doi.org/10.1190/1.1444319

    Article  Google Scholar 

  34. Zou, Z. H., Liu, K., Zhao, W., et al., 2016. Upper Crustal Structure beneath the Northern South Yellow Sea Revealed by Wide-Angle Seismic Tomography and Joint Interpretation of Geophysical Data. Geological Journal, 51(4): 108–122. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 41230318), the Natural Science Foundation of Shandong Province (No. ZR2014DM006), the China Postdoctoral Science Foundation (No. 2015M582138), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0816-7.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhihui Zou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Zhou, H., Gurrola, H. et al. Impact and Solutions of Seawater Heterogeneity on Wide-Angle Tomographic Inversion of Crustal Velocities in Deep Marine Environments—Numerical Studies. J. Earth Sci. 29, 1380–1389 (2018). https://doi.org/10.1007/s12583-017-0816-7

Download citation

Key words

  • deep water
  • seismic tomography
  • wide-angle seismic survey
  • water heterogeneity
  • OBS
  • vertical cable