Distribution of Intra-Crustal Low Velocity Zones beneath Yunnan from Seismic Ambient Noise Tomography

Abstract

Previous studies have reached consensus that low velocity zones are widespread in the crust beneath Yunnan region. However, the relationships between the low velocity zones and large faults, earthquake distribution are less investigated by available studies. By analyzing the seismic ambient noise recorded by Yunnan Seismic Networks and Tengchong volcano array, we construct a 3D crustal shear wave velocity model for the Yunnan region, which provides more details of the distribution of intra-crustal low velocity zones in all of Yunnan. The distribution of low velocity zones shows different features at different depths. At shallow depths, the results are well correlated with near surface geological features. With increasing depth, the low velocity zones are gradually concentrated to the northern part of our study area, most likely reflecting variations in crustal thickness beneath the Yunnan region. The low velocity zones are truncated at depth by several large faults in Yunnan. It is interesting that most strong earthquakes (Ms≥5.0) occurred in Yunnan are distributed in low velocity zones or the transition zones between low and high velocity anomalies within the upper-to-middle crust. The crustal structure is composed of a brittle, seismically active upper-to-middle crust and a warm, aseismic lower crust.

This is a preview of subscription content, log in to check access.

References Cited

  1. Backus, G., Gilbert, F., 1968. The Resolving Power of Gross Earth Data. Geophysical Journal International, 16(2): 169–205. https://doi.org/10.1111/j.1365-246x.1968.tb00216.x

    Article  Google Scholar 

  2. Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358–362. https://doi.org/10.1038/ngeo830

    Article  Google Scholar 

  3. Bao, X. W., Sun, X. X., Xu, M. J., et al., 2015. Two Crustal Low-Velocity Channels beneath SE Tibet Revealed by Joint Inversion of Rayleigh Wave Dispersion and Receiver Functions. Earth and Planetary Science Letters, 415(5): 16–24. https://doi.org/10.13039/501100002858

    Article  Google Scholar 

  4. Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3): 1239–1260. https://doi.org/10.1111/j.1365-246x.2007.03374.x

    Article  Google Scholar 

  5. Cheng, C., Chen, L., Yao, H. J., et al., 2013. Distinct Variations of Crustal Shear Wave Velocity Structure and Radial Anisotropy beneath the North China Craton and Tectonic Implications. Gondwana Research, 23(1): 25–38. https://doi.org/10.1016/j.gr.2012.02.014

    Article  Google Scholar 

  6. Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  7. Fang, L. H., Wu, J. P., Ding, Z. F., et al., 2010. High Resolution Rayleigh Wave Group Velocity Tomography in North China from Ambient Seismic Noise. Geophysical Journal International, 16(2): 1171–1182. https://doi.org/10.1111/j.1365-246x.2010.04571.x

    Google Scholar 

  8. Herrmann, R. B., Ammon, C. J., 2004. Surface Waves, Receiver Functions and Crustal Structure. Computer Programs in Seismology, Version, 3.30. [2018-4-9]. https://doi.org/www.eas.slu.edu/eqc/eqccps.html

    Google Scholar 

  9. He, Z. Q., Ye, T. L., Su, W., 2005. 3-D Velocity Structure of the Middle and Upper Crust in the Yunnan Region, China. Pure and Applied Geophysics, 162(12): 2355–2368. https://doi.org/10.1007/s00024-005-2780-x

    Article  Google Scholar 

  10. Hu, H. X., Gao, S. Y., 1993. The Investigation of Fine Velocity Structure of the Basement Layer of Earth’s Crust in Western Yunnan Region. Earthquake Research in China, 9(4): 356–363 (in Chinese with English Abstract)

    Google Scholar 

  11. Hu, J. F., Su, Y. J., Zhu, X. G., et al., 2005a. S-Wave Velocity and Poisson’s Ratio Structure of Crust in Yunnan and Its Implication. Science in China Series D: Earth Sciences, 48(2): 210–218. https://doi.org/10.1360/03yd0062

    Article  Google Scholar 

  12. Hu, J. F., Zhu, X. G., Xia, J. Y., et al., 2005b. Using Surface Wave and Receiver Function to Jointly Inverse the Crust-Mantle Velocity Structure in the West Yunnan Area. Chinese Journal of Geophysics, 48(5): 1148–1155. https://doi.org/10.1002/cjg2.758

    Article  Google Scholar 

  13. Huang, J. L., Zhao, D. P., Zheng, S. H., 2002. Lithospheric Structure and Its Relationship to Seismic and Volcanic Activity in Southwest China. Journal of Geophysical Research: Solid Earth, 107(B10): ESE 13-1–ESE 13–14. https://doi.org/10.1029/2000jb000137

    Google Scholar 

  14. Kan, R. J., Hu, H. X., Zeng, R. S., et al., 1986. Crustal Structure of Yunnan Province, Peopleʼs Republic of China, from Seismic Refraction Profiles. Science, 234(4775): 433–437. https://doi.org/10.1126/science.234.4775.433

    Article  Google Scholar 

  15. Kennett, B. L. N., Engdahl, E. R., Buland, R., 1995. Constraints on Seismic Velocities in the Earth from Traveltimes. Geophysical Journal International, 122(1): 108–124. https://doi.org/10.1111/j.1365-246x.1995.tb03540.x

    Article  Google Scholar 

  16. Lei, J. S., Zhao, D. P., Su, Y. J., 2009. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data. Journal of Geophysical Research, 114(B5): B05302. https://doi.org/10.1029/2008jb005881

    Article  Google Scholar 

  17. Leloup, P. H., Ricard, Y., Battaglia, J., et al., 1999. Shear Heating in Continental Strike-Slip Shear Zones: Model and Field Examples. Geophysical Journal International, 136(1): 19–40. https://doi.org/10.1046/j.1365-246x.1999.00683.x

    Article  Google Scholar 

  18. Li, H. Y., Liu, X., Li, X. F., et al., 2011. Rayleigh Wave Group Velocity Distribution in Ningxia. Journal of Earth Science, 22(1): 117–123. https://doi.org/10.1007/s12583-011-0162-0

    Article  Google Scholar 

  19. Li, H. Y., Su, W., Wang, C. Y., et al., 2009. Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth and Planetary Science Letters, 282(1/2/3/4): 201–211. https://doi.org/10.1016/j.epsl.2009.03.021

    Article  Google Scholar 

  20. Li, Y. H., Wu, Q. J., Zhang, R. Q., et al., 2008. The Crust and Upper Mantle Structure beneath Yunnan from Joint Inversion of Receiver Functions and Rayleigh Wave Dispersion Data. Physics of the Earth and Planetary Interiors, 170(1/2): 134–146. https://doi.org/10.1016/j.pepi.2008.08.006

    Article  Google Scholar 

  21. Li, Y. H., Wu, Q. J., Tian, X. B., et al., 2009. Crustal Structure in the Yunnan Region Determined by Modeling Receiver Functures. Chinese Journal of Geophysics, 52(1): 67–80 (in Chinese with English Abstract)

    Google Scholar 

  22. Lobkis, O. I., Weaver, R. L., 2001. On the Emergence of the Green’s Function in the Correlations of a Diffuse Field. The Journal of the Acoustical Society of America, 110(6): 3011–3017. https://doi.org/10.1121/1.1417528

    Article  Google Scholar 

  23. Moschetti, M. P., Ritzwoller, M. H., Shapiro, N. M., 2007. Surface Wave Tomography of the Western United States from Ambient Seismic Noise: Rayleigh Wave Group Velocity Maps. Geochemistry, Geophysics, Geosystems, 8(8). https://doi.org/10.1029/2007gc001655

    Google Scholar 

  24. Paul, A., Campillo, M., Margerin, L., et al., 2005. Empirical Synthesis of Time-Asymmetrical Green Functions from the Correlation of Coda Waves. Journal of Geophysical Research, 110(B8): B08302. https://doi.org/10.1029/2004jb003521

    Article  Google Scholar 

  25. Qin, J. Z., Qian, X. D., Huangfu, G., 1996. The Seismicity Feature of the Volcanic Area in Tengchong. Seismol. Geomagn. Obs. Res., 17: 19–27 (in Chinese with English Abstract)

    Google Scholar 

  26. Ritzwoller, M. H., Levshin, A. L., 1998. Eurasian Surface Wave Tomography: Group Velocities. Journal of Geophysical Research: Solid Earth, 103(B3): 4839–4878. https://doi.org/10.1029/97jb02622

    Google Scholar 

  27. Roux, P., Sabra, K. G., Kuperman, W. A., et al., 2005. Ambient Noise cross Correlation in Free Space: Theoretical Approach. The Journal of the Acoustical Society of America, 117(1): 79–84. https://doi.org/10.1121/1.1830673

    Article  Google Scholar 

  28. Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788–790. https://doi.org/10.1126/science.276.5313.788

    Article  Google Scholar 

  29. Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054–1058. https://doi.org/10.1126/science.1155371

    Article  Google Scholar 

  30. Sabra, K. G., Gerstoft, P., Roux, P., et al., 2005a. Extracting Time-Domain Greenʼs Function Estimates from Ambient Seismic Noise. Geophysical Research Letters, 32(3): L03310. https://doi.org/10.1029/2004gl021862

    Article  Google Scholar 

  31. Sabra, K. G., Gerstoft, P., Roux, P., et al., 2005b. Surface Wave Tomography from Microseisms in Southern California. Geophysical Research Letters, 32(14): L14311. https://doi.org/10.1029/2005gl023155

    Article  Google Scholar 

  32. Schärer, U., Zhang, L. S., Tapponnier, P., 1994. Duration of Strike-Slip Movements in Large Shear Zones: The Red River Belt, China. Earth and Planetary Science Letters, 126(4): 379–397. https://doi.org/10.1016/0012-821x(94)90119-8

    Article  Google Scholar 

  33. Snieder, R., 2004. Extracting the Green’s Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase. Physical Review E, 69(4): 046610. https://doi.org/10.1103/physreve.69.046610

    Article  Google Scholar 

  34. Wang, C. Y., Chan, W. W., Mooney, W. D., 2003. Three-Dimensional Velocity Structure of Crust and Upper Mantle in Southwestern China and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 108(B9): 2442. https://doi.org/10.1029/2002jb001973

    Article  Google Scholar 

  35. Wang, C. Y., Huangfu, G., 2004. Crustal Structure in Tengchong Volcano-Geothermal Area, Western Yunnan, China. Tectonophysics, 380(1/2): 69–87. https://doi.org/10.1016/j.tecto.2003.12.001

    Article  Google Scholar 

  36. Wang, Q., Gao, Y., 2014. Rayleigh Wave Phase Velocity Tomography and Strong Earthquake Activity on the Southeastern Front of the Tibetan Plateau. Science China Earth Sciences, 57(10): 2532–2542. https://doi.org/10.1007/s11430-014-4908-2

    Article  Google Scholar 

  37. Wang, Y., 2001. Heat Flow Pattern and Lateral Variations of Lithosphere Strength in China Mainland: Constraints on Active Deformation. Physics of the Earth and Planetary Interiors, 126(3/4): 121–146. https://doi.org/10.1016/s0031-9201(01)00251-5

    Article  Google Scholar 

  38. Wei, W., Sun, R. M., Shi, Y. L., 2010. P-Wave Tomographic Images beneath Southeastern Tibet: Investigating the Mechanism of the 2008 Wenchuan Earthquake. Science China Earth Sciences, 53(9): 1252–1259. https://doi.org/10.1007/s11430-010-4037-5

    Article  Google Scholar 

  39. Wessel, P., Smith, W. H. F., 1998. New, Improved Version of Generic Mapping Tools Released. EOS, Transactions American Geophysical Union, 79(47): 579–579. https://doi.org/10.1029/98eo00426

    Article  Google Scholar 

  40. Wu, J. P., Ming, Y. H., 2001. The S Wave Velocity Structure beneath Digital Seismic Stations of Yunnan Province Inferred from Teleseismic Receiver Function Modeling. Chinese Journal of Geophysics, 44(2): 228–237 (in Chinese with English Abstract)

    Article  Google Scholar 

  41. Xu, L. L., Rondenay, S., van der Hilst, R. D., 2007. Structure of the Crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions. Physics of the Earth and Planetary Interiors, 165(3/4): 176–193. https://doi.org/10.1016/j.pepi.2007.09.002

    Article  Google Scholar 

  42. Xu, X. M., Li, H. Y., Gong, M., et al., 2011. Three-Dimensional S-Wave Velocity Structure in Eastern Tibet from Ambient Noise Rayleigh and Love Wave Tomography. Journal of Earth Science, 22(2): 195–204. https://doi.org/10.1007/s12583-011-0172-y

    Article  Google Scholar 

  43. Xu, Y., Yang, X. T., Liu, J. H., 2013. Tomographic Study of Crustal Velocity Structures in the Yunnan Region Southwest China. Chinese Journal of Geophysics, 56(6): 1904–1914 (in Chinese with English Abstract). https://doi.org/10.6038/cjg20130613

    Google Scholar 

  44. Yang, Y. J., Li, A. B., Ritzwoller, M. H., 2008. Crustal and Uppermost Mantle Structure in Southern Africa Revealed from Ambient Noise and Teleseismic Tomography. Geophysical Journal International, 174(1): 235–248. https://doi.org/10.1111/j.1365-246x.2008.03779.x

    Article  Google Scholar 

  45. Yanovskaya, T. B., Ditmar, P. G., 1990. Smoothness Criteria in Surface Wave Tomography. Geophysical Journal International, 102(1): 63–72. https://doi.org/10.1111/j.1365-246x.1990.tb00530.x

    Article  Google Scholar 

  46. Yanovskaya, T. B., Kizima, E. S., Antonova, L. M., 1998. Structure of the Crust in the Black Sea and Adjoining Regions from Surface Wave Data. Journal of Seismology, 2(4): 303–316. https://doi.org/10.1023/A:1009716017960

    Article  Google Scholar 

  47. Yao, H. J., Beghein, C., van der Hilst, R. D., 2008. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis-II. Crustal and Upper-Mantle Structure. Geophysical Journal International, 173(1): 205–219. https://doi.org/10.1111/j.1365-246x.2007.03696.x

    Article  Google Scholar 

  48. Yao, H. J., van der Hilst, R. D., de Hoop, M. V., 2006. Surface-Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis-I. Phase Velocity Maps. Geophysical Journal International, 166(2): 732–744. https://doi.org/10.1111/j.1365-246x.2006.03028.x

    Article  Google Scholar 

  49. Yao, H. J., van der Hilst, R. D., Montagner, J. P., 2010. Heterogeneity and Anisotropy of the Lithosphere of SE Tibet from Surface Wave Array Tomography. Journal of Geophysical Research, 115(B12): B12307. https://doi.org/10.1029/2009jb007142

    Article  Google Scholar 

  50. Yao, H. J., Xu, G. M., Zhu, L. B., et al., 2005. Mantle Structure from Inter-Station Rayleigh Wave Dispersion and its Tectonic Implication in Western China and Neighboring Regions. Physics of the Earth and Planetary Interiors, 148(1): 39–54. https://doi.org/10.1016/j.pepi.2004.08.006

    Article  Google Scholar 

  51. Zhang, X., Wang, Y. H., 2009. Crustal and Upper Mantle Velocity Structure in Yunnan, Southwest China. Tectonophysics, 471(3/4): 171–185. https://doi.org/10.1016/j.tecto.2009.02.009

    Article  Google Scholar 

  52. Zhang, Z. J., Bai, Z. M., Wang, C. Y., et al., 2005a. Crustal Structure of Gondwana-and Yangtze-Typed Blocks: An Example by Wide-Angle Seismic Profile from Menglian to Malong in Western Yunnan. Science in China Series D: Earth Sciences, 48(11): 1828–1836. https://doi.org/10.1360/03yd0547

    Article  Google Scholar 

  53. Zhang, Z. J., Bai, Z. M., Wang, C. Y., et al., 2005b. The Crustal Structure under Sanjiang and Its Dynamic Implications: Revealed by Seismic Reflection/Refraction Profile between Zhefang and Binchuan, Yunnan. Science in China Series D: Earth Sciences, 48(9): 1329–1336. https://doi.org/10.1360/01yd0567

    Article  Google Scholar 

  54. Zhao, D. P., Ochi, F., Hasegawa, A., et al., 2000. Evidence for the Location and Cause of Large Crustal Earthquakes in Japan. Journal of Geophysical Research: Solid Earth, 105(B6): 13579–13594. https://doi.org/10.1029/2000jb900026

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editors and two anonymous reviewers for their useful comments. We thank T. B. Yanovskaya of Leningrad State University for providing the 2D tomography software and Robert Herrmann from Saint Louis University for his Computer Programs in Seismology (CPS) software package. We are also grateful to Prof. Huajian Yao, University of Science and Technology of China, Hefei, China, for providing the software package to extract the phase dispersion curves. Figures 1 and 5–8 are constructed using the GMT software (Wessel and Smith, 1998). Seismic data are provided by Yunnan Seismic Networks. This study was financially supported by the National 973-Project (No. 2013CB733303), the National Natural Science Foundation of China (No. 41474093), and the Key Natural Science Foundation of Hubei Province (No. 2014CFA110). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0815-8.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuangxi Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Zhang, S., Li, M. et al. Distribution of Intra-Crustal Low Velocity Zones beneath Yunnan from Seismic Ambient Noise Tomography. J. Earth Sci. 29, 1409–1418 (2018). https://doi.org/10.1007/s12583-017-0815-8

Download citation

Key words

  • ambient noise tomography
  • crustal structure
  • low velocity zone
  • fault
  • strong earthquake