Seismic Attribute Analysis with Saliency Detection in Fractional Fourier Transform Domain

Abstract

Most image saliency detection models are dependent on prior knowledge and demand high computational cost. However, spectral residual (SR) and phase spectrum of the Fourier transform (PFT) models are simple and fast saliency detection approaches based on two-dimensional Fourier transform without the prior knowledge. For seismic data, the geological structure of the underground rock formation changes more obviously in the time direction. Therefore, one-dimensional Fourier transform is more suitable for seismic saliency detection. Fractional Fourier transform (FrFT) as an improved algorithm for Fourier transform, we propose the seismic SR and PFT models in one-dimensional FrFT domain to obtain more detailed saliency maps. These two models use the amplitude and phase information in FrFT domain to construct the corresponding saliency maps in spatial domain. By means of these two models, several saliency maps at different fractional orders can be obtained for seismic attribute analysis. These saliency maps can characterize the detailed features and highlight the object areas, which is more conducive to determine the location of reservoirs. The performance of the proposed method is assessed on both simulated and real seismic data. The results indicate that our method is effective and convenient for seismic attribute extraction with good noise immunity.

This is a preview of subscription content, log in to check access.

References Cited

  1. Achanta, R., Hemami, S., Estrada, F., et al., 2009. Frequency-Tuned Salient Region Detection. IEEE Conference on Computer Vision and Pattern Recognition, 1597–1604. https://doi.org/10.1109/CVPR.2009.5206596

    Google Scholar 

  2. Chen, Q., Sidney, S., 1997. Seismic Attribute Technology for Reservoir Forecasting and Monitoring. The Leading Edge, 16(5): 445–448. https://doi.org/10.1190/1.1437657

    Article  Google Scholar 

  3. Chen, Y. P., Peng, Z. M., He, Z. H., et al., 2013. The Optimal Fractional Gabor Transform Based on the Adaptive Window Function and Its Application. Applied Geophysics, 10(3): 305–313. https://doi.org/10.1007/s11770-013-0392-2

    Article  Google Scholar 

  4. Chopra, S., Marfurt, K. J., 2005. Seismic Attributes—A Historical Perspective. Geophysics, 70(5): 3SO–28SO. https://doi.org/10.1190/1.2098670

    Article  Google Scholar 

  5. Chopra, S., Marfurt, K. J., 2008. Emerging and Future Trends in Seismic Attributes. The Leading Edge, 27(3): 298–318. https://doi.org/10.1190/1.2896620

    Article  Google Scholar 

  6. Ell, T. A., Sangwine, S. J., 2007. Hypercomplex Fourier Transforms of Color Images. IEEE Transactions on Image Processing, 16(1): 22–35. https://doi.org/10.1109/tip.2006.884955

    Article  Google Scholar 

  7. Goloshubin, G., Silin, D., Vingalov, V., et al., 2008. Reservoir Permeability from Seismic Attribute Analysis. The Leading Edge, 27(3): 376–381. https://doi.org/10.1190/1.2896629

    Article  Google Scholar 

  8. Guo, C., Ma, Q., Zhang, L., 2008. Spatio-Temporal Saliency Detection Using Phase Spectrum of Quaternion Fourier Transform. IEEE Conference on Computer Vision and Pattern Recognition, 1–8. https://doi.org/10.1109/CVPR.2008.4587715

    Google Scholar 

  9. Hou, X., Zhang, L., 2007. Saliency Detection: A Spectral Residual Approach. IEEE Conference on Computer Vision and Pattern Recognition, 1–8. https://doi.org/10.1109/CVPR.2007.383267

    Google Scholar 

  10. Kutay, A., Ozaktas, H. M., Ankan, O., et al., 1997. Optimal Filtering in Fractional Fourier Domains. IEEE Transactions on Signal Processing, 45(5): 1129–1143. https://doi.org/10.1109/78.575688

    Article  Google Scholar 

  11. Li, J., Levine, M. D., An, X. J., et al., 2013. Visual Saliency Based on Scale-Space Analysis in the Frequency Domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4): 996–1010. https://doi.org/10.1109/tpami.2012.147

    Article  Google Scholar 

  12. Martin, G. S., 2004. The Marmousi 2 Model, Elastic Synthetic Data, and an Analysis of Imaging and AVO in a Structurally Complex Environment: [Dissertation]. University of Houston, Houston. 6–19

    Google Scholar 

  13. Qi, S. X., Ma, J., Li, H., et al., 2014. Infrared Small Target Enhancement via Phase Spectrum of Quaternion Fourier Transform. Infrared Physics & Technology, 62: 50–58. https://doi.org/10.1016/j.infrared.2013.10.008

    Article  Google Scholar 

  14. Steeghs, P., Drijkoningen, G., 2001. Seismic Sequence Analysis and Attribute Extraction Using Quadratic Time-Frequency Representations. Geophysics, 66(6): 1947–1959. https://doi.org/10.1190/1.1487136

    Article  Google Scholar 

  15. Tian, L., Peng, Z. M., 2014. Determining the Optimal Order of Fractional Gabor Transform Based on Kurtosis Maximization and Its Application. Journal of Applied Geophysics, 108: 152–158. https://doi.org/10.1016/j.jappgeo.2014.06.009

    Article  Google Scholar 

  16. Wang, C., Lu, Y. C., Huang, H. G., et al., 2015. New Seismic Attribute Technology for Predicting Dissolved Pore-Fracture of Deeply Buried Platform Margin Reef-Beach System in Northeast Sichuan Basin, China. Journal of Earth Science, 26(3): 373–383. https://doi.org/10.1007/s12583-015-0540-0

    Article  Google Scholar 

  17. Wang, Y. Q., Peng, Z. M., 2016. The Optimal Fractional S Transform of Seismic Signal Based on the Normalized Second-Order Central Moment. Journal of Applied Geophysics, 129: 8–16. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  18. Wang, Y. Q., Peng, Z. M., He, Y. M., 2015. Instantaneous Attributes Analysis of Seismic Signals Using Improved HHT. Journal of Earth Science, 26(4): 515–521. https://doi.org/10.1007/s12583-015-0555-6

    Article  Google Scholar 

  19. Yu, Y., Wang, B., Zhang, L., 2009. Pulse Discrete Cosine Transform for Saliency-Based Visual Attention. IEEE 8th International Conference on Development and Learning, 1–6. https://doi.org/10.1109/DEVLRN.2009.5175512

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61571096, 61775030, 41274127, 41301460, and 40874066). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0811-z.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhenming Peng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Peng, Z., Han, Y. et al. Seismic Attribute Analysis with Saliency Detection in Fractional Fourier Transform Domain. J. Earth Sci. 29, 1372–1379 (2018). https://doi.org/10.1007/s12583-017-0811-z

Download citation

Key words

  • saliency detection
  • spectral residual
  • phase spectrum
  • fractional Fourier transform (FrFT)
  • attribute extraction
  • seismic data