Skip to main content
Log in

Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint

  • Mineralogy and Petrogeochemistry
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Shadong deposit is the first large-scale tungsten deposit found in the East Tianshan orogenic belt, and the geologic characteristics of the deposit indicate that the deeply concealed granite body is genetically related with the mineralization. The LA-ICPMS U-Pb age of zircons from the Shadong concealed granite obtained in this research is 239±2.0 Ma, belonging to the Middle Triassic. The whole rock samples are metaluminous to slightly peraluminous (A/CNK=0.95–1.02) with low contents of SiO2 (64.0 wt.%–68.5 wt.%) and low K2O/Na2O ratios (0.73–0.96). The samples reveal enrichment of K, Rb, Th and depletion of Nb, Ta, P, Ti and have a negative slope from La to Lu (LaN/YbN=16.29–36.8) with weak negative Eu anomaly (Eu/Eu*= 0.71–0.82). Initial 87Sr/86Sr ratios of whole rock range of 0.706 59–0.707 75, εNd(t) values range from -1.77 to -2.53 and εHf(t) values of zircon are between 2.54 and 4.90. The lithogeochemistry and Sr-Nd-Hf isotopic characteristics revealed that the concealed granite in Shadong tungsten deposit is I-type granite, and occurs in an intraplate tectonic setting. The magma mixing during intraplating of mantle derived magma intruding into the crust in Indosinian Period is the major formation mechanism of the granite. Of which, the proportion of mantle derived magma ranges from 58% to 60%, and the crustal materials are mainly the metamorphic basement of Xingxingxia Group of Mesoproterozoic Changcheng System, which may provide the main source of ore forming metals of Shadong tungsten deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Albarède, F., 1998. The Growth of Continental Crust. Tectonophysics, 296(1/2): 1–14. https://doi.org/10.1016/s0040-1951(98)00133-4

    Article  Google Scholar 

  • Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8

    Article  Google Scholar 

  • Broska, I., Williams, C. T., Uher, P., et al., 2004. The Geochemistry of Phosphorus in Different Granite Suites of the Western Carpathians, Slovakia: The Role of Apatite and P-Bearing Feldspar. Chemical Geology, 205(1/2): 1–15. https://doi.org/10.1016/j.chemgeo.2003.09.004

    Article  Google Scholar 

  • Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257–268. https://doi.org/10.1007/s11434-006-0257-7

    Article  Google Scholar 

  • Chappell, B. W., 1999. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535–551. https://doi.org/10.1016/s0024-4937(98)00086-3

    Article  Google Scholar 

  • Chappell, B. W., White, J. R., 1992. I-and S-type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1–26. https://doi.org/10.1017/S0263593300007720

    Google Scholar 

  • Chen, C., 2013. Tungsten Mineralization Study of East Tianshan-Beishan Area: [Dissertation]. China University of Geosciences, Wuhan. 170 (in Chinese with English Abstract)

    Google Scholar 

  • Chen, C., Lü, X. B., Cao, X. F., et al., 2013. Geochronology, Geochemistry and Geological Significance of Late Carboniferous–Early Permian Granites in Kumishi Area, Xinjiang. Earth Science—Journal of China University of Geosciences, 38: 218–232 (in Chinese with English Abstract)

    Google Scholar 

  • Collins, W. J., 1982. Nature and Origin of A Type Granites with Paticular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189–200. https://doi.org/10.1007/BF00374895

    Article  Google Scholar 

  • Condie, K. C., 1998. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection?. Earth and Planetary Science Letters, 163(1/2/3/4): 97–108. https://doi.org/10.1016/s0012-821x(98)00178-2

    Article  Google Scholar 

  • Cunningham, D., Owen, L., Snee, L., et al., 2003. Structural Framework of a Major Intracontinental Orogenic Termination Zone: The Easternmost Tien Shan, China. Journal of the Geological Society, 160(4): 575–590. https://doi.org/10.1144/0016-764902-122

    Article  Google Scholar 

  • Deng, X. H., Chen, Y. J., Santosh, M., et al., 2017. U-Pb Zircon, Re-Os Molybdenite Geochronology and Rb-Sr Geochemistry from the Xiaobaishitou W (-Mo) Deposit: Implications for Triassic Tectonic Setting in Eastern Tianshan, NW China. Ore Geology Reviews, 80: 332–351. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • DePaolo, D. J., Perry, F. V., Baldridge, W. S., 1992. Crustal versus Mantle Sources of Granitic Magmas: A Two-Parameter Model Based on Nd Isotopic Studies. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 439–446. https://doi.org/10.1017/s0263593300008117

    Article  Google Scholar 

  • Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn-and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2/3): 568–581. https://doi.org/10.1016/j.gr.2011.01.013

    Article  Google Scholar 

  • Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research, 95(B13): 21503–21521. https://doi.org/10.1029/jb095ib13p21503

    Article  Google Scholar 

  • Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837–840. https://doi.org/10.1038/nature00799

    Article  Google Scholar 

  • Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Gao, Q. L., Chen, Z. Q., Zhang, N., et al., 2015. Ages, Trace Elements and Hf-Isotopic Compositions of Zircons from Claystones around the Permian-Triassic Boundary in the Zunyi Section, South China: Implications for Nature and Tectonic Setting of the Volcanism. Journal of Earth Science, 26(6): 872–882. https://doi.org/10.1007/s12583-015-0589-9

    Article  Google Scholar 

  • Gu, L. X., Zhang, Z. Z., Wu, C. Z., et al., 2006. Some Problems on Granites and Vertical Growth of the Continental Crust in the Eastern Tianshan Mountains. NW China. Acta Petrologica Sinica, 22: 1103–1120 (in Chinese with English Abstract)

    Google Scholar 

  • Guo, Z. J., Shi, H. Y., Zhang, Z. C., et al., 2006. The Tectonic Evolution of the South Tianshan Paleo-Oceanic Crust Inferred from the Spreading Structures and Ar-Ar Dating of the Hongliuhe Ophiolite, NW China. Acta Petrologica Sinica, 22: 95–102 (in Chinese with English Abstract)

    Google Scholar 

  • Han, B. F., He, G. Q., Wang, S. G., 1999. Postcollisional Mantle-Derived Magmatism, Underplating and Implications for Basement of the Junggar Basin. Science in China Series D: Earth Sciences, 42(2): 113–119. https://doi.org/10.1007/bf02878509

    Article  Google Scholar 

  • He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190/191: 485–499. https://doi.org/10.1016/j.lithos.2013.12.023

    Article  Google Scholar 

  • Hidaka, H., Shimizu, H., Adachi, M., 2002. U-Pb Geochronology and REE Geochemistry of Zircons from Palaeoproterozoic Paragneiss Clasts in the Mesozoic Kamiaso Conglomerate, Central Japan: Evidence for an Archean Provenance. Chemical Geology, 187(3/4): 279–293. https://doi.org/10.1016/s0009-2541(02)00058-x

    Article  Google Scholar 

  • Hong, D. W., Zhang, J. S., Wang, T., et al., 2004. Continental Crustal Growth and the Supercontinental Cycle: Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23(5): 799–813. https://doi.org/10.1016/s1367-9120(03)00134-2

    Article  Google Scholar 

  • Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2): 15–51. https://doi.org/10.1016/s0040-1951(00)00176-1

    Google Scholar 

  • Hu, A. Q., Zhang, G. X., Chen, Y. B., 2006. Isotope Geochronology and Geochemistry for Major Geological Events of Continental Crustal Evolution of Xinjiang, China. Geological Publishing House, Beijing. 421 (in Chinese)

    Google Scholar 

  • Hu, S. Q., Zhu, Q., Zhang, X. J., et al., 2013. Geochronology, Geochemistry and Zircon Hf Isotope of Granite Porphyry in Yuanzhuding Cu-Mo Deposit, Guangdong Province. Mineral Deposites, 32: 1139–1158 (in Chinese with English Abstract)

    Google Scholar 

  • Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. https://doi.org/10.1039/c2ja30078h

    Article  Google Scholar 

  • Jahn, B. M., Windley, B., Natal’in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599–603. https://doi.org/10.1016/s1367-9120(03)00124-x

    Article  Google Scholar 

  • Jahn, B. M., Wu, F. Y., Hong, D. W., 2000a. Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1): 5–20. https://doi.org/10.1007/bf02719146

    Article  Google Scholar 

  • Jahn, B. M., Wu, F. Y., Chen, B., 2000b. Masssive Granitoid Generation in Central Asia: Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23: 82–92

    Google Scholar 

  • Jiang, S. H., Nie, F. J., 2006. 40Ar-39Ar Geochronology of Hongjianbingshan Tungsten Deposit in Beishan Mountain, Gansu Province, China. Mineral Deposits, 25: 89–94 (in Chinese with English Abstract)

    Google Scholar 

  • Jiang, X., Guo, Y. M., Yang, L. Z., et al., 2012. Geological Characteristics and Preliminary Origin of Shadong Large Tungsten Deposit in Hami, Xinjiang. Xinjiang Geology, 30: 31–35 (in Chinese with English Abstract)

    Google Scholar 

  • Keay, S., Collins, W. J., McCulloch, M. T., 1997. A Three-Component Sr-Nd Isotopic Mixing Model for Granitoid Genesis, Lachlan Fold Belt, Eastern Australia. Geology, 25(4): 307–310. https://doi.org/10.1130/0091-7613(1997)025<0307:atcsni>2.3.co;2

    Article  Google Scholar 

  • Klemd, R., John, T., Scherer, E. E., et al., 2011. Changes in Dip of Subducted Slabs at Depth: Petrological and Geochronological Evidence from HP-UHP Rocks (Tianshan, NW-China). Earth and Planetary Science Letters, 310(1/2): 9–20. https://doi.org/10.1016/j.epsl.2011.07.022

    Article  Google Scholar 

  • Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., et al., 2004. Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt: Geological and Isotopic Evidence. Journal of Asian Earth Sciences, 23(5): 605–627. https://doi.org/10.1016/s1367-9120(03)00130-5

    Article  Google Scholar 

  • Li, C. N., 1992. Trace Elements Petrology of Igneous Rock. China University of Geosciences Publishing, Wuhan. 195 (in Chinese)

    Google Scholar 

  • Li, D. P., Du, Y. S., Pang, Z. S., et al., 2013. Zircon U-Pb Chronology and Geochemistry of Carboniferous Volcanic Rocks in Awulale Area, Western Tianshan Mountains. Acta Geoscientia Sinica, 34: 176–192 (in Chinese with English Abstract)

    Google Scholar 

  • Li, H. Q., Chen, F. W., Lu, Y. F., et al., 2005. New Chronological Evidence for Indosinian Diagenetic Mineralization in Eastern Xinjiang, NW China. Acta Geologica Sinica—English Edition, 79(2): 264–275. https://doi.org/10.1111/j.1755-6724.2005.tb00888.x

    Article  Google Scholar 

  • Li, W. P., Wang, T., Li, J. B., et al., et al., 2001. Geochemical Characteristics and Tectonic Setting of the Late Paleozoic Granites from the Hongliuhe Area, Eastern Tianshan. Geological Review, 47: 368–376 (in Chinese with English Abstract)

    Google Scholar 

  • Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1/2): 186–204. https://doi.org/10.1016/j.lithos.2006.09.018

    Article  Google Scholar 

  • Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical Research, 34(2): 117–134. https://doi.org/10.1111/j.1751-908X.2010.00036.x

    Article  Google Scholar 

  • Liu, W., Liu, X. J., Xiao, W. J., 2012. Massive Granitoid Production without Massive Continental-Crust Growth in the Chinese Altay: Insight into the Source Rock of Granitoids Using Integrated Zircon U-Pb Age, Hf-Nd-Sr Isotopes and Geochemistry. American Journal of Science, 312(6): 629–684. https://doi.org/10.2475/06.2012.02

    Article  Google Scholar 

  • Liu, Y. J., Ma, D. S., 1987. Geochemistry of Tungsten. Science Press, Beijing. 232 (in Chinese)

    Google Scholar 

  • Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004

    Article  Google Scholar 

  • Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4

    Article  Google Scholar 

  • Lü, X. B., Zhu, J., Cao, X. F., et al., 2012. Magmatism and Its Metallogenetic Effects during the Paleozoic–Triassic Continental Crustal Construction in the Liuyuan Area, South Beishan, NW China. Geological Science and Technology Information, 31: 119–127 (in Chinese with English Abstract)

    Google Scholar 

  • Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2010. Discovery of Middle Silurian Adaltite Granite and Its Tectonic Significance in Liuyuan Area, Beishan Moutains, NW China. Acta Petrologica Sinica, 26: 584–596 (in Chinese with English Abstract)

    Google Scholar 

  • Murphy, J. B., Nance, R. D., 2002. Sm-Nd Isotopic Systematics as Tectonic Tracers: An Example from West Avalonia in the Canadian Appalachians. Earth-Science Reviews, 59(1–4): 77–100. https://doi.org/10.1016/s0012-8252(02)00070-3

    Article  Google Scholar 

  • Nie, F. J., Jiang, S. H., Hu, P., et al., 2004. Geological Features and Ore-Forming Material Sources of Hongjianbingshan Tungsten Deposit in Beishan Mountain, Gansu Province. Mineral Deposits, 23: 11–19 (in Chinese with English Abstract)

    Google Scholar 

  • Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745

    Article  Google Scholar 

  • Petford, N., Cmden, A. R., McCaffrey, K. J. W., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth’s Crust. Nature, 408: 669–673. https://doi.org/10.1038/35047000

    Article  Google Scholar 

  • Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247–263. https://doi.org/10.1016/0024-4937(89)90028-5

    Article  Google Scholar 

  • Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, London. 351

    Google Scholar 

  • Ryerson, F. J., Watson, E. B., 1987. Rutile Saturation in Magmas: Implications for Ti-Nb-Ta Depletion in Island-Arc Basalts. Earth and Planetary Science Letters, 86(2/3/4): 225–239. https://doi.org/10.1016/0012-821x(87)90223-8

    Article  Google Scholar 

  • Schmidt, M. W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2/3): 304–310. https://doi.org/10.1007/bf00310745

    Article  Google Scholar 

  • Sengör, A. M. C., Natal’in, B. A., 1996. Paleotectonics of Asia: Fragments of Synthesis. In: Yin, A., Harrison, M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge. 480–640

  • Stepanov, A. S., Hermann, J., 2013. Fractionation of Nb and Ta by Biotite and Phengite: Implications for the “Missing Nb Paradox”. Geology, 41(3): 303–306. https://doi.org/10.1130/g33781.1

    Article  Google Scholar 

  • Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2012. Occurrence of an Alaskan-Type Complex in the Middle Tianshan Massif, Central Asian Orogenic Belt: Inferences from Petrological and Mineralogical Studies. International Geology Review, 54(3): 249–269. https://doi.org/10.1080/00206814.2010.543009

    Article  Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Tang, G. J., Wang, Q., Wyman, D. A., et al., 2013. Petrogenesis of Gold-Mineralized Magmatic Rocks of the Taerbieke Area, Northwestern Tianshan (Western China): Constraints from Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopic Compositions. Journal of Asian Earth Sciences, 74: 113–128. https://doi.org/10.1016/j.jseaes.2013.03.022

    Article  Google Scholar 

  • Tang, J. L., 2015. Geological, Geochemical Characteristics and Genesis of Shadong Tungsten Deposit, Hami, Xinjiang: [Dissertation]. Xinjiang University, Urumchi. 56 (in Chinese with English Abstract)

    Google Scholar 

  • Visonà, D., Lombardo, B., 2002. Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet). Himalayan Leucogranite Genesis by Isobaric Heating?. Lithos, 62(3/4): 125–150. https://doi.org/10.1016/s0024-4937(02)00112-3

    Google Scholar 

  • Wang, J. H., 2005. Study on Geological Conditions of Ore Forming and Directions of Ore Prospecting of Tungsten Ore Deposits in the Western Qilian Mountains: [Dissertation]. Chang’an University, Xi’an. 57 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, S., Ye, H. S., Yang, Y. Q., 2016. Zircon U-Pb Chronology, Geochemistry and Hf Isotopic Compositions of the Huoshenmiao Pluton, Western Henan. Earth Science—Journal of China University of Geosciences, 41(2): 293–316 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Wang, T., Hong, D. W., Tong, Y., et al., 2005. Zircon U-Pb SHRIMP Age and on Origin of Post-Orogenic Lamazhao Granitic Pluton from Altai Orogen: Its Implications for Vertical Continental Growth. Acta Petrologica Sinica, 21: 640–650 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, T., Li, W. P., Li, J. B., et al., 2008. Increase of Juvenal Mantle-Derived Composition from Syn-Orogenic to Post-Orogenic Granites of East Part of the Eastern Tianshan (China) and Implications for Continental Vertical Growth: Sr and Nd Isotopic Evidence. Acta Petrologica Sinica, 24: 762–772 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Y. H., Xue, C. J., Liu, J. J., et al., 2016. Geological, Geochronological, Geochemical, and Sr-Nd-O-Hf Isotopic Constraints on Origins of Intrusions Associated with the Baishan Porphyry Mo Deposit in Eastern Tianshan, NW China. Mineralium Deposita, 51(7): 953–969. https://doi.org/10.1007/s00126-016-0646-z

    Article  Google Scholar 

  • Wang, Y. H., Zhao, C. B., Zhang, F. F., et al., 2015. SIMS Zircon U-Pb and Molybdenite Re-Os Geochronology, Hf Isotope, and Whole-Rock Geochemistry of the Wunugetushan Porphyry Cu-Mo Deposit and Granitoids in NE China and Their Geological Significance. Gondwana Research, 28(3): 1228–1245. https://doi.org/10.13039/501100003407

    Article  Google Scholar 

  • Wang, Y. J., Yuan, C., Long, X. P., et al., 2011. Geochemistry, Zircon U-Pb Ages and Hf Isotopes of the Paleozoic Volcanic Rocks in the Northwestern Chinese Altai: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 42(5): 969–985. https://doi.org/10.1016/j.jseaes.2010.11.005

    Article  Google Scholar 

  • Wei, S. L., Jia, B. H., Zeng, Q. W., 2006. Metallogenic Mechanism of Tungsten Deposit in Nanling Area. Resource Surve & nvironment, 27: 103–109 (in Chinese with English Abstract)

    Google Scholar 

  • Whitehouse, M. J., 2003. Rare Earth Elements in Zircon: A Review of Applications and Case Studies from the Outer Hebridean Lewisian Complex, NW Scotland. Geological Society, London, Special Publications, 220(1): 49–64. https://doi.org/10.1144/gsl.sp.2003.220.01.03

    Article  Google Scholar 

  • Wickham, S. M., Litvinovsky, B. A., Zanvilevich, A. N., et al., 1995. Geochemical Evolution of Phanerozoic Magmatism in Transbaikalia, East Asia: A Key Constraint on the Origin of K-Rich Silicic Magmas and the Process of Cratonization. Journal of Geophysical Research: Solid Earth, 100(B8): 15641–15654. https://doi.org/10.1029/95jb00035

    Article  Google Scholar 

  • Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x

    Article  Google Scholar 

  • Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2003. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3/4): 241–273. https://doi.org/10.1016/s0024-4937(02)00222-0

    Article  Google Scholar 

  • Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1/2): 89–113. https://doi.org/10.1016/s0040-1951(00)00179-7

    Article  Google Scholar 

  • Wu, Y. S., Xiang, N., Tang, H. S., et al., 2013. Molybdenite Re-Os Isotope Age of the Donggebi Mo Deposit and the Indosinian Metallogenic Event in Eastern Tianshan. Acta Petrologica Sinica, 29: 121–130 (in Chinese with English Abstract)

    Google Scholar 

  • Wu, Y. S., Zhou, K. F., Li, N., et al., 2017. Zircon U-Pb Dating and Sr-Nd-Pb-Hf Isotopes of the Ore-Associated Porphyry at the Giant Donggebi Mo Deposit, Eastern Tianshan, NW China. Ore Geology Reviews, 81: 794–807. https://doi.org/10.13039/501100001809

    Article  Google Scholar 

  • Xi, B. B., Zhang, D. H., Zhou, L. M., 2007. Magmatic Evolutions of Several Granite Plutons Related to Sn(W) Mineralizations in the Nanling Region, China. Geological Bulletin of China, 26: 1591–1599 (in Chinese with English Abstract)

    Google Scholar 

  • Xing, X. W., Wang, Y. J., Zhang, Y. Z., 2016. Detrital Zircon U-Pb Geochronology and Lu-Hf Isotopic Compositions of the Wuliangshan Metasediment Rocks in SW Yunnan (China) and Its Provenance Implications. Journal of Earth Science, 27(3): 412–424. https://doi.org/10.1007/s12583-015-0647-3

    Article  Google Scholar 

  • Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 27(3): 474–490. https://doi.org/10.1007/s12583-016-0674-6

    Article  Google Scholar 

  • Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3/4): 339–359. https://doi.org/10.1016/j.chemgeo.2005.01.014

    Article  Google Scholar 

  • Zhai, W., Sun, X. M., Wu, Y. S., et al., 2012. He-Ar Isotope Geochemistry of the Yaoling-Meiziwo Tungsten Deposit, North Guangdong Province: Constraints on Yanshanian Crust-Mantle Interaction and Metallogenesis in SE China. Chinese Science Bulletin, 57(10): 1150–1159. https://doi.org/10.1007/s11434-011-4952-7

    Article  Google Scholar 

  • Zhang, Z. Z., 2005. From the Underplating to Intraplating: Vertical Accretion of Continental Crust and Granites in the East Section of Mid-Tianshan Block: [Dissertation]. Nanjing University, Nanjing. 135 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, H. F., Gao, S., Zhong, Z. Q., et al., 2002. Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids: Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh-Pressure Metamorphic Belt, China. Chemical Geology, 186(3/4): 281–299. https://doi.org/10.1016/s0009-2541(02)00006-2

    Article  Google Scholar 

  • Zhang, Q., Jin, W. J., Li, C. D., et al., 2010. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents: Index. Acta Petrologica Sinica, 26: 985–1015 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, Q., Jin, W. J., Li, C. D., et al., 2011. Granitic Rocks and Their Formation Depth in the Crust. Geotectonica et Metallogenia, 211: 259–269 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, W., Zhou, H. W., Zhu, Y. H., 2016. The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton. Earth Science—Journal of China University of Geosciences, 41(8): 1334–1348 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Zhang, Z. Z., Gu, L. X., Wu, C. Z., et al., 2005. Zircon SHRIMP Dating for the Weiya Pluton, Eastern Tianshan: Its Geological Implications. Acta Geologica Sinica—English Edition, 79(4): 481–490. https://doi.org/10.1111/j.1755-6724.2005.tb00914.x

    Article  Google Scholar 

  • Zhao, H. X., Jiang, S. Y., Dai, B. Z., et al., 2015. Geochronology and Hf Isotope Study of Pegmatite in the Xiaoqinling Area of NW China: Implication for Petrogenesis and Regional Metamorphism. Journal of Earth Science, 26(3): 295–305. https://doi.org/10.1007/s12583-015-0537-8

    Article  Google Scholar 

  • Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated I-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444–460. https://doi.org/10.1007/s12583-016-0677-3

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Key Technology Research and Development Program of China (No. 2011BAB06B04). We appreciate the engineers of Shadong deposit for their help and fruitful discussion during our field investigations. Comments and suggestions from reviewers and editors greatly improved the quality of the paper. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0808-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbiao Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Lü, X., Wu, C. et al. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. J. Earth Sci. 29, 114–129 (2018). https://doi.org/10.1007/s12583-017-0808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0808-7

Key words

Navigation