Skip to main content
Log in

Organo-petrographic and pore facets of Permian shale beds of Jharia Basin with implications to shale gas reservoir

  • Articles
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The shale deposits of Damodar Valley have received great attention since preliminary studies indicate their potential for shale gas. However, fundamental information allied to shale gas reservoir characteristics are still rare in India, as exploration is in the primary stage. In this study, Barakar shale beds of eastern part of Jharia Basin are evaluated for gas reservoir characteristics. It is evident that Barakar shales are carbonaceous, silty, contains sub-angular flecks of quartz and mica, irregular hair-line fractures and showing lithological variations along the bedding planes, signifying terrestrial-fluviatile deposits under reducing environment. The values of TOC varies from 1.21 wt.% to 17.32 wt.%, indicating good source rock potentiality. The vitrinite, liptinite, inertinite and mineral matter ranging from 0.28 vol.% to 12.98 vol.%, 0.17 vol.% to 3.23 vol.%, 0.23 vol.% to 9.05 vol.%, and 74.74 vol.% to 99.10 vol.%, respectively. The ternary facies plot of maceral composition substantiated that Barakar shales are vitrinite rich and placed in the thermal-dry gas prone region. The low values of the surface area determined following different methods point towards low methane storage capacity, this is because of diagenesis and alterations of potash feldspar responsible for pore blocking effect. The pore size distribution signifying the micro to mesoporous nature, while Type II sorption curve with the H2 type of hysteresis pattern, specifies the heterogeneity in pore structure mainly combined-slit and bottle neck pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Aisharhan, A. S., Nairn, A. E. M., 2003. Sedimentary Basins and Petroleum Geology of the Middle East. Elsevier, The Netherlands. 944

    Google Scholar 

  • Brooks, B. T., 1952. Evidence of Catalytic Action in Petroleum Formation. Industrial & Engineering Chemistry, 44(11): 2570–2577. doi:10.1021/ie50515a032

    Article  Google Scholar 

  • Brown, M. L., 2009. Analytical Trilinear Pressure Transient Model for Multiply Fractured Horizontal Wells in Tight Shale Reservoirs. [Dissertation]: Colorado School of Mines, Golden

    Google Scholar 

  • Brunauer, S., Deming, L. S., Deming, W. E., et al., 1940. On a Theory of the van Der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7): 1723–1732. doi:10.1021/ja01864a025

    Article  Google Scholar 

  • Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309–319. doi:10.1021/ja01269a023

    Article  Google Scholar 

  • Bureau of Indian Standard (BIS), 1995. Methods of Test for Coal and Coke (Second Revision of IS: 1350). Part I, Proximate Analysis. Manak Bhawan, 9 Bahadur Shah Zafar Marg, New Delhi. 1–29

    Google Scholar 

  • Casshyap, S. M., 1970. Sedimentary Cycles and Environment of Deposition of the Barakar Coal Measures of Lower Gondwana, India. SEPM Journal of Sedimentary Research, Vol. 40: 1302–1317. doi:10.1306/74d7218f-2b21-11d7-8648000102c1865d

    Google Scholar 

  • Casshyap, S. M., Tewari, R. C., 1987. Depositional Model and Tectonic Evolution of Gondwana Basins. The Palaeobotanist, 36: 59–66

    Google Scholar 

  • Chalmers, G. R. L., Bustin, R. M., 2007. The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1/2/3): 223–239. doi:10.1016/j.coal.2006.05.001

    Article  Google Scholar 

  • Chandra, D., 1992. Jharia Coalfield. Geological Society of India, Bangalore. 1–11

    Google Scholar 

  • Chandra, S. K., 1990. Deposition of Bivalves in Indian Gondwana Coal Measures. Indian Miner., 44(1): 31–44

    Google Scholar 

  • Chandra, S. K., Betekhtina, O. A., 1990. Bivalves in Indian Gondwana Coal Measures. Indian J. Geol., 62(1): 18–26

    Google Scholar 

  • Clarkson, C. R., Freeman, M., He, L., et al., 2012. Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis. Fuel, 95: 371–385. doi:10.1016/j.fuel.2011.12.010

    Article  Google Scholar 

  • Claypool, G. E., 1998. Kerogen Conversion in Fractured Shale Petroleum Systems. AAPG Search and Discovery, Article #90937©1998, AAPG Annual Convention and Exhibition. Salt Lake City, Utah

    Google Scholar 

  • Coal India Limited, 1993. Coal Atlas of India. CMPDI, Ranchi

    Google Scholar 

  • Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86: 1921–1938. doi:10.1306/61eeddbe-173e-11d7-8645000102c1865d

    Google Scholar 

  • Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26–31. doi:10.1016/j.coal.2012.08.004

    Article  Google Scholar 

  • de Boer, J. H., 1958. The Structure and Properties of Porous Materials. Butterworths, London. 68

    Google Scholar 

  • Durand, B., Alpern, B., Pittion, L. J., et al., 1986. Reflectance of Vitrinite as a Control of Thermal History of Sediments. In: Burrus, J. ed., Thermal Modeling in Sedimentary Basins, Insitut Francais Petrole Research Conferences on Exploration, Carcan, France, June 3–7, 1985. Editions Technip, Paris. 441–473

    Google Scholar 

  • EIA-Energy Information Administration, USA, 2011. World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States, EIA Website. [2017-09-10] (2014-04). http://www.eia.gov/analysis/studies/worldshalegas [April 2011]

    Google Scholar 

  • EIA-Energy Information Administration, USA, 2012. Annual Energy Review. [2017-09-10]. www.eia.doe.gov

    Google Scholar 

  • Fu, H. J., Tang, D. Z., Xu, T., et al., 2017. Characteristics of Pore Structure and Fractal Dimension of Low-Rank Coal: A Case Study of Lower Jurassic Xishanyao Coal in the Southern Junggar Basin, NW China. Fuel, 193: 254–264. doi:10.13039/501100001809

    Article  Google Scholar 

  • Grim R. E., 1947. Relation of Clay Mineralogy to Origin and Recovery of Petroleum. AAPG Bulletin, 31: 1491–1499. doi:10.1306/3d933a1f-16b1-11d7-8645000102c1865d

    Google Scholar 

  • Hakimi, M. H., Abdullah, W. H., Sia, S. G., et al., 2013. Organic Geochemical and Petrographic Characteristics of Tertiary Coals in the Northwest Sarawak, Malaysia: Implications for Palaeoenvironmental Conditions and Hydrocarbon Generation Potential. Marine and Petroleum Geology, 48: 31–46. doi:10.1016/j.marpetgeo.2013.07.009

    Article  Google Scholar 

  • Hardy, P., 2014. Chapter 1: Introduction and Overview: The Role of Shale Gas in Securing Our Energy Future in Fracking. Environmental Science and Technology, Royal Society of Chemistry, Thomas Graham House, Cambridge. 1–45. doi: 10.1039/9781782620556-00001

    Google Scholar 

  • International Committee for Coal Petrology (ICCP), 1963. International Handbook of Coal Petrography: 2nd Ed. Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • International Committee for Coal Petrology (ICCP), 1971. International Handbook of Coal Petrography (1st Supplement to 2nd Edition). International Committee for Coal and Organic Petrology, Unpagenated

    Google Scholar 

  • International Committee for Coal Petrology (ICCP), 1973. International Handbook of Coal Petrography. Supplement to 2nd Ed. Centre National Recherche Scientifique, Paris

    Google Scholar 

  • International Committee for Coal Petrology (ICCP), 1993. International Handbook of Coal Petrography. 2nd Ed., 3rd Supplement to 2nd Ed. University of New Castle, England

    Google Scholar 

  • International Committee for Coal Petrology (ICCP), 1995. Vitrinite Classification. ICCP System 1994, Aachen. 1–24

    Google Scholar 

  • International Committee for Coal Petrology (ICCP), 1998. The New Vitrinite Classification (ICCP System 1994). Fuel, 77: 349–358

    Google Scholar 

  • International Energy Agency (IEA), 2007. World Energy Outlook—Global Energy Prospects: Impact of Developments in China & India. 1–674. http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/weo_ 2007.pdf

    Google Scholar 

  • IUPAC, 1997. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A.D. McNaught and A. Wilkinson, Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Jacob, K., F. N. I., Ramaswamy, S. K., Rizvi, S. R. A., et al., 1958. Sedimentological Studies in Parts of Jharia and East Bokaro Coalfields. Geological Survey of India, 24A(6): 339–357

    Google Scholar 

  • Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 1—Shale Gas Resource Systems. In: Breyer, J., ed., Shale Reservoirs—Giant Resources for the 21st Century. American Association of Petroleum Geologists Memoir, 97: 69–87

    Google Scholar 

  • Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475–499. doi:10.1306/12190606068

    Article  Google Scholar 

  • Kuila, U., Prasad, M., 2013. Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophysical Prospecting, 61(2): 341–362. doi:10.1111/1365-2478.12028

    Article  Google Scholar 

  • Kuila, U., Prasad, M., Derkowski, A., et al., 2012. Compositional Controls on Mudrock Pore-Size Distribution: An Example from Nibrara Formation. SPE Annual Technical and Exhibition (October 8–10), San Antonio. http://dx.doi.org/10.2118/160141-MS

    Google Scholar 

  • Labani, M. M., Rezaee, R., Saeedi, A., et al., 2013. Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112: 7–16. doi:10.1016/j.petrol.2013.11.022

    Article  Google Scholar 

  • Li, A., Ding, W. L., He, J. H., et al., 2016. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Shale Reservoirs: A Case Study of Lower Cambrian Qiongzhusi Formation in Malong Block of Eastern Yunnan Province, South China. Marine and Petroleum Geology, 70: 46–57. doi:10.13039/501100001809

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. doi:10.2110/jsr.2009.092

    Article  Google Scholar 

  • Mani, D., Patil, D. J., Dayal, A. M., et al., 2015. Thermal Maturity, Source Rock Potential and Kinetics of Hydrocarbon Generation in Permian Shales from the Damodar Valley Basin, Eastern India. Marine and Petroleum Geology, 66: 1056–1072. doi:10.1016/j.marpetgeo.2015.08.019

    Article  Google Scholar 

  • Mastalerz, M., He, L. L., Melnichenko, Y. B., et al., 2012a. Porosity of Coal and Shale: Insights from Gas Adsorption and SANS/USANS Techniques. Energy & Fuels, 26(8): 5109–5120. doi:10.1021/ef300735t

    Article  Google Scholar 

  • Mastalerz, M., Schimmelmann, A., Lis, G. P., et al., 2012b. Influence of Maceral Composition on Geochemical Characteristics of Immature Shale Kerogen: Insight from Density Fraction Analysis. International Journal of Coal Geology, 103: 60–69. doi:10.1016/j.coal.2012.07.011

    Article  Google Scholar 

  • Mendhe, V. A., Mishra, S., Varma, A. K., et al., 2017a. Gas Reservoir Characteristics of the Lower Gondwana Shales in Raniganj Basin of Eastern India. Journal of Petroleum Science and Engineering, 149: 649–664. doi:10.1016/j.petrol.2016.11.008

    Article  Google Scholar 

  • Mendhe, V. A., Bannerjee, M., Varma, A. K., et al., 2017b. Fractal and Pore Dispositions of Coal Seams with Significance to Coalbed Methane Plays of East Bokaro, Jharkhand, India. Journal of Natural Gas Science and Engineering, 38: 412–433. doi:10.1016/j.jngse.2016.12.020

    Article  Google Scholar 

  • Mendhe, V. A., Mishra, S., Bannerjee, M., et al., 2017c. Evaluation of Thermal Maturity, Pore Structure and Behaviour of Gas Transport in Permian Shale Beds of Jharia Basin, Jharkhand. Proceedings of International Conference on NexGen Technologies for Mining and Fuel Industries (NxGnMiFu-2017), New Delhi. 1397–1408

    Google Scholar 

  • Mendhe, V. A., Mishra, S., Kamble, A. D., et al., 2017d. Geological Controls and Flow Mechanism of Permian Gas Shale Reservoir of Raniganj Basin, West Bengal. Journal of Geosciences Research, 1: 161–172

    Google Scholar 

  • Mendhe, V. A., Kamble, A. D., Bannerjee, M., et al., 2016. Evaluation of Shale Gas Reservoir in Barakar and Barren Measures Formations of North and South Karanpura Coalfields, Jharkhand. Journal of the Geological Society of India, 88(3): 305–316. doi:10.1007/s12594-016-0493-7

    Article  Google Scholar 

  • Mendhe, V. A., Mishra, S., Kamble, A. D., et al., 2015a. Shale Gas and Emerging Energy Resource: Prospects in India. The Indian Mining & Engineering Journal, 54(6): 21–31

    Google Scholar 

  • Mendhe, V. A., Mishra, S., Varma, A. K., et al., 2015b. Coalbed Methane-Produced Water Quality and Its Management Options in Raniganj Basin, West Bengal, India. Applied Water Science, 7(3): 1359–1367. doi:10.1007/s13201-015-0326-7

    Article  Google Scholar 

  • Meyer, K., Klobes, P., 1999. Comparison between Different Presentations of Pore Size Distribution in Porous Materials. Fresenius’ Journal of Analytical Chemistry, 363(2): 174–178. doi:10.1007/s002160051166

    Article  Google Scholar 

  • Mishra, S., Mani, D., Kavitha, S., et al., 2014. Organic Matter Characteristics and Gas Generation Potential of the Tertiary Shales from NW Kutch, India. Journal of Petroleum Science and Engineering, 124: 114–121. doi:10.1016/j.petrol.2014.10.019

    Article  Google Scholar 

  • Mishra, S., Mendhe, V. A., Kamble, A. D., et al., 2016. Prospects of Shale Gas Exploitation in Lower Gondwana of Raniganj Coalfield (West Bengal), India. The Palaeobotanist, 65: 31–46

    Google Scholar 

  • Montgomery, S. L., Jarvie, D. M., Bowker, K. A., et al., 2005. Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas: Gas-Shale Play with Multi-Trillion Cubic Foot Potential. AAPG Bulletin, 89(2): 155–175. doi:10.1306/09170404042

    Article  Google Scholar 

  • Moore, D. E., Morrow, C. A., Byerlee, J. D., 1982. Use of Swelling Clays to Reduce Permeability and Its Potential Application to Nuclear Waste Repository Sealing. Geophysical Research Letters, 9(9): 1009–1012. doi:10.1029/gl009i009p01009

    Article  Google Scholar 

  • Padhy, P. K., Das, S. K., 2013. Shale Oil and Gas Plays: Indian Sedimentary Basins. Geohorizons, 18: 20–25

    Google Scholar 

  • Passey, Q. R., Bohacs, K. M., Esch, W. L., et al., 2010. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir––Geologic and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs. Society Petroleum Engineers, 2010: 131350

    Google Scholar 

  • Person, M., Raffensperger, J. P., Ge, S. M., et al., 1996. Basin-Scale Hydrogeologic Modeling. Reviews of Geophysics, 34(1): 61–87. doi:10.1029/95rg03286

    Article  Google Scholar 

  • Pollastro, R. M., 2007. Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous (Unconventional) Gas Accumulation, Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 551–578. doi:10.1306/06200606007

    Article  Google Scholar 

  • Pophare, A. M., Mendhe, V. A., Varade, A., 2008. Evaluation of Coal Bed Methane Potential of Coal Seams of Sawang Colliery, Jharkhand, India. Journal of Earth System Science, 117(2): 121–132. doi:10.1007/s12040-008-0003-4

    Article  Google Scholar 

  • Quantachrome, 2014. Characterising Porous Materials and Powders AutosorbiQ and ASiQwin. Gas Sorption System Operating Manual, 2: 199–426

    Google Scholar 

  • Roshan, H., Al-Yaseri, A. Z., Sarmadivaleh, M., et al., 2016. On Wettability of Shale Rocks. Journal of Colloid and Interface Science, 475: 104–111. doi:10.1016/j.jcis.2016.04.041

    Article  Google Scholar 

  • Ross, D. J. K., Marc, B. R., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916–927. doi:10.1016/j.marpetgeo.2008.06.004

    Article  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K. S. W., 1999. Adsorption by Powders and Porous Solids. Academic Press, London

    Google Scholar 

  • Ruppel, S. C., Loucks, R. G., Gale, J. F. W., 2008. Barnett, Woodford, and Related Mudrock Successions in Texas Cores and Outcrops. A Core Workshop Prepared for the 2008 AAPG/SEPM, Annual Convention, Austin. 82

    Google Scholar 

  • Schlumberger, M., 2012. China’s Anton Oilfield Eyes More Opportunities with Schlumberger Partnership. Platts Commodity News, 12 July 2012, via Factiva, © 2012 Platts

    Google Scholar 

  • Schmoker, J. W., 1995. Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. In: Gautier, D. L., Dolton, G. L., Takahashi, K. I., et al., eds., National Assessment of United States Oil and Gas Resources—Results, Methodology, and Supporting Data. U. S. Geological Survey Digital Data Series, DDS-30

    Google Scholar 

  • Sen, S., Das, N., Maiti, D., 2016. Facies Analysis and Depositional Model of Late Permian Raniganj Formation: Study from Raniganj Coal Bed Methane Block. Journal of the Geological Society of India, 88(4): 503–516. doi:10.1007/s12594-016-0513-7

    Article  Google Scholar 

  • Sengupta, N., 1980. A Revision of the Geology of the JCF with Particular Reference to Distribution of Coal Seam: [Dissertation]. ISM, Dhanbad, India

    Google Scholar 

  • Shiver, R., Nelsen, K., Li, E., et al., 2015. Unconventional Shale Reservoir’s Property Estimation through Modeling, Case Studies of Australian Shale. Energy and Power Engineering, 7(3): 71–80. doi:10.4236/epe.2015.73007

    Article  Google Scholar 

  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Applied Chemistry, 57: 603–619

    Article  Google Scholar 

  • Sing, K., 2001. The Use of Nitrogen Adsorption for the Characterisation of Porous Materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188: 3–9. doi:10.1016/s0927-7757(01)00612-4

    Article  Google Scholar 

  • Singh, H., 2016. A Critical Review of Water Uptake by Shales. Journal of Natural Gas Science and Engineering, 34: 751–766. doi:10.13039/100000015

    Article  Google Scholar 

  • Taylor, G. H., Teichmuller, M., Davis, A., et al., 1998. Organic Petrology. Gebruder Borntranger, Berlin

    Google Scholar 

  • Tewari, R. C., Casshyap, S. M., 1982. Paleoflow Analysis of Late Paleozoic Gondwana Deposits of Giridih and Adjoining Basins and Paleogeographic Implications. Journal of Geological Society of India, 23(2): 67–79

    Google Scholar 

  • Tewari, R. C., Casshyap, S. M., 1983. Cyclicity in Early Permian Fluviatile Gondwana Coal Measures: An Example from Giridih and Saharjuri Basins, Bihar, India. Sedimentary Geology, 35(4): 297–312. doi:10.1016/0037-0738(83)90063-5

    Article  Google Scholar 

  • Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, New York. 720

    Book  Google Scholar 

  • USGS, 1986. USGS Research on Energy Resources-Program and Abstracts. V. E. Mckelvey Forum on Mineral and Energy Resources, U.S. Geological Circular, 974

    Google Scholar 

  • Uysal, I. T., Glikson, M., Golding, S. D., et al., 2004. Hydrothermal Control on Organic Matter Alteration and Illite Precipitation, Mt Isa Basin, Australia. Geofluids, 4(2): 131–142. doi:10.1111/j.1468-8115.2004.00077.x

    Article  Google Scholar 

  • Varma, A. K., Hazra, B., Mendhe, V. A., et al., 2015. Assessment of Organic Richness and Hydrocarbon Generation Potential of Raniganj Basin Shales, West Bengal, India. Marine and Petroleum Geology, 59: 480–490. doi:10.1016/j.marpetgeo.2014.10.003

    Article  Google Scholar 

  • Varma, A. K., Hazra, B., Samad, S. K., et al., 2014. Methane Sorption Dynamics and Hydrocarbon Generation of Shale Samples from West Bokaro and Raniganj Basins, India. Journal of Natural Gas Science and Engineering, 21: 1138–1147. doi:10.1016/j.jngse.2014.11.011

    Article  Google Scholar 

  • Wang, L., Torres, A., Xiang, L., et al., 2015. A Technical Review on Shale Gas Production and Unconventional Reservoirs Modeling. Natural Resources, 6(3): 141–151. doi:10.4236/nr.2015.63013

    Article  Google Scholar 

  • Wang, M., Yang, J. X., Wang, Z. W., et al., 2015. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China. PLOS ONE, 10(8): e0135252. doi:10.1371/journal.pone.0135252

    Article  Google Scholar 

  • Wei, L., Wang, Y. Z., Mastalerz, M., 2016. Comparative Optical Properties of Macerals and Statistical Evaluation of Mis-Identification of Vitrinite and Solid Bitumen from Early Mature Middle Devonian––Lower Mississippian New Albany Shale: Implications for Thermal Maturity Assessment. International Journal of Coal Geology, 168: 222–236. doi:10.13039/100000015

    Article  Google Scholar 

  • Wintsch, R. P., Christoffersen, R., Kronenberg, A. K., 1995. Fluid-Rock Reaction Weakening of Fault Zones. Journal of Geophysical Research: Solid Earth, 100(B7): 13021–13032. doi:10.1029/94jb02622

    Article  Google Scholar 

  • Zhao, P. Q., Ma, H. L., Rasouli, V., et al., 2017. An Improved Model for Estimating the TOC in Shale Formations. Marine and Petroleum Geology, 83: 174–183. doi:10.13039/501100004701

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. P. K. Singh, CSIR-Central Institute of Miningand Fuel Research, Dhanbad for his constant encouragement to take up this research work and publication. We are also grateful to Ministry of Coal for funding support of the project entitled “Shale gas potentiality evaluation of Damodar Basin of India” (Coal S & T grant: CE(EoI)/30) under the research work has been carried out. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0779-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Atmaram Mendhe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendhe, V.A., Mishra, S., Khangar, R.G. et al. Organo-petrographic and pore facets of Permian shale beds of Jharia Basin with implications to shale gas reservoir. J. Earth Sci. 28, 897–916 (2017). https://doi.org/10.1007/s12583-017-0779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0779-8

Key Words

Navigation