Journal of Earth Science

, Volume 28, Issue 5, pp 758–778 | Cite as

Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 2: Geochemistry, thermal maturity, isotopes and biomarkers

  • David A. Wood
  • Bodhisatwa Hazra
Invited Review Article


As shale exploitation is still in its infancy outside North America much research effort is being channelled into various aspects of geochemical characterization of shales to identify the most prospective basins, formations and map their petroleum generation capabilities across local, regional and basin-wide scales. The measurement of total organic carbon, distinguishing and categorizing the kerogen types in terms oil-prone versus gas-prone, and using vitrinite reflectance and Rock-Eval data to estimate thermal maturity are standard practice in the industry and applied to samples from most wellbores drilled. It is the trends of stable isotopes ratios, particularly those of carbon, the wetness ratio (C1/Σ(C2+C3)), and certain chemical biomarkers that have proved to be most informative about the status of shales as a petroleum system. These data make it possible to identify production “sweet-spots”, discriminate oil-, gas-liquid- and gas-prone shales from kerogen compositions and thermal maturities. Rollovers and reversals of ethane and propane carbon isotope ratios are particularly indicative of high thermal maturity exposure of an organic-rich shale. Comparisons of hopane, strerane and terpane biomarkers with vitrinite reflectance (Ro) measurements of thermal maturity highlight discrepancies suggesting that Ro is not always a reliable indicator of thermal maturity. Major and trace element inorganic geochemistry data and ratios provides useful information regarding provenance, paleoenvironments, and stratigraphic-layer discrimination. This review considers the data measurement, analysis and interpretation of techniques associated with kerogen typing, thermal maturity, stable and non-stable isotopic ratios for rocks and gases derived from them, production sweet-spot identification, geochemical biomarkers and inorganic chemical indicators. It also highlights uncertainties and discrepancies observed in their practical application, and the numerous outstanding questions associated with them.

Key Words

kerogen type shale organic lithofacies shale thermal maturity shale isotopes shale biomarkers shale trace elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Bodhisatwa Hazra would like to thank the Department of Science & Technology (DST; Ministry of Science & Technology, Government of India), for providing funding for his research through the DST-Inspire Assured Opportunity of Research Career (AORC) scheme. The final publication is available at Springer via

References Cited

  1. Akinlua, A., Smith, R. M., 2010. Subcritical Water Extraction of Trace Metals from Petroleum Source Rock. Talanta, 81(4/5): 1346–1349. doi:10.1016/j.talanta.2010.02.029CrossRefGoogle Scholar
  2. Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324/325: 6–18. doi:10.1016/j.chemgeo.2011.09.002CrossRefGoogle Scholar
  3. American Society for Testing and Materials (ASTM), 2015a. Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks. Annual Book of ASTM Standards: Petroleum Products, Lubricants, and Fossil Fuels; Gaseous Fuels; Coal and Coke Sec. 5, V. 5.06: ASTM International, West Conshohocken, PA. [2016-02-14]. Scholar
  4. American Society for Testing and Materials (ASTM), 2015b. Standard Test Method for Microscopical Determination of the Reflectance of the Vitrinite Reflectance of Coal. Annual Book of ASTM Standards: Petroleum Products, Lubricants, and Fossil Fuels; Gaseous Fuels; Coal and Coke Sec. 5, V. 5.06 ASTM International, West Conshohocken, PA. [2016-04-06]. Scholar
  5. Baldock, J. A., Skjemstad, J. O., 2000. Role of the Soil Matrix and Minerals in Protecting Natural Organic Materials against Biological Attack. Organic Geochemistry, 31(7/8): 697–710. doi:10.1016/s0146-6380(00)00049-8CrossRefGoogle Scholar
  6. Barker, C. E., 1991. An Update on the Suppression of Vitrinite Reflectance. TSOP Newsletter, 8(4): 8–11Google Scholar
  7. Behar, F., Beaumont, V., De B. Penteado, H. L., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 56(2): 111–134. doi:10.2516/ogst:2001013CrossRefGoogle Scholar
  8. Behar, F., Kressmann, S., Rudkiewicz, J. L., et al., 1992. Experimental Simulation in a Confined System and Kinetic Modelling of Kerogen and Oil Cracking. Organic Geochemistry, 19(1/2/3): 173–189. doi:10.1016/0146-6380(92)90035-vCrossRefGoogle Scholar
  9. Behar, F., Vandenbroucke, M., 1987. Chemical Modelling of Kerogens. Organic Geochemistry, 11(1): 15–24. doi:10.1016/0146-6380(87)90047-7CrossRefGoogle Scholar
  10. Bergamaschi, B. A., Tsamakis, E., Keil, R. G., et al., 1997. The Effect of Grain Size and Surface Area on Organic Matter, Lignin and Carbohydrate Concentration, and Molecular Compositions in Peru Margin Sediments. Geochimica et Cosmochimica Acta, 61(6): 1247–1260. doi:10.1016/s0016-7037(96)00394-8CrossRefGoogle Scholar
  11. Berrocoso, A. J., MacLeod, K. G., Calvert, S. E., et al., 2008. Bottom Water Anoxia, Inoceramid Colonization, and Benthopelagic Coupling during Black Shale Deposition on Demerara Rise (Late Cretaceous Western Tropical North Atlantic). Paleoceanography, 23(3): 1–20. doi:10.1029/2007pa001545Google Scholar
  12. Bertrand, P., Béhar, F., Durand, B., 1986. Composition of Potential Oil from Humic Coals in Relation to Their Petrographic Nature. Organic Geochemistry, 10(1/2/3): 601–608. doi:10.1016/0146-6380(86)90056-2CrossRefGoogle Scholar
  13. Bock, M. J., Mayer, L. M., 2000. Mesodensity Organo-Clay Associations in a Near-Shore Sediment. Marine Geology, 163(1/2/3/4): 65–75. doi:10.1016/s0025-3227(99)00105-xCrossRefGoogle Scholar
  14. Bostick, N. H., Foster, J. N., 1975. Comparison of Vitrinite Reflectance in Coal Seams and in Kerogen of Sandstones, Shales, and Limestones in the Same Part of a Sedimentary Section. In: Alpern, B., ed., Petrographie de la Matiereorganique des Sediments, Relations Avec la Paleotemperature et le Potential Petrolier, Paris, CNRS. 13–25Google Scholar
  15. Bowker, K. A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523–533. doi:10.1306/06190606018CrossRefGoogle Scholar
  16. Burnaman, M. D., Xia, W. W., Shelton, J., 2009. Shale Gas Play Screening and Evaluation Criteria. China Pet. Explor., 14(3): 51–64Google Scholar
  17. Burruss, R. C., Laughrey, C. D., 2010. Carbon and Hydrogen Isotopic Reversals in Deep Basin Gas: Evidence for Limits to the Stability of Hydrocarbons. Organic Geochemistry, 41(12): 1285–1296. doi:10.1016/j.orggeochem.2010.09.008CrossRefGoogle Scholar
  18. Carpentier, B., Huc, A.-Y., Hamou, P., et al., 1995. Detection, Distribution and Origin of Thin Tar Mats in the Miller Field (North Sea, UK). 17th International Meeting on Organic Geochemistry, San Sebastian, Spain. 388–390Google Scholar
  19. Carpentier, B., Huc, A.-Y., Marquis, F., et al., 1998. Distribution and Origin of a Tar Mat in the S. Field (Abu Dhabi, A.E.U.). The 8th Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, U.A.E., SPE 49472: 1–10CrossRefGoogle Scholar
  20. Carr, A. D., 2000. Suppression and Retardation of Vitrinite Reflectance, Part 1. Formation and Significance for Hydrocarbon Generation. Journal of Petroleum Geology, 23(3): 313–343. doi:10.1111/j.1747-5457.2000.tb01022.xCrossRefGoogle Scholar
  21. Carvajal-Ortiz, H., Gentzis, T., 2015. Critical Considerations when Assessing Hydrocarbon Plays Using Rock-Eval Pyrolysis and Organic Petrology Data: Data Quality Revisited. International Journal of Coal Geology, 152: 113–122. doi:10.1016/j.coal.2015.06.001CrossRefGoogle Scholar
  22. Chen, G. J., Yen, M. C., Wang, J. M., et al., 2008. Layered Inorganic/Enzyme Nanohybrids with Selectivity and Structural Stability upon Interacting with Biomolecules. Bioconjugate Chemistry, 19(1): 138–144. doi:10.1021/bc700224qCrossRefGoogle Scholar
  23. Chen, J. P., Qin, Y., Huff, B. G., et al., 2001. Geochemical Evidence for Mudstone as the Possible Major Oil Source Rock in the Jurassic Turpan Basin, Northwest China. Organic Geochemistry, 32(9): 1103–1125. doi:10.1016/s0146-6380(01)00076-6CrossRefGoogle Scholar
  24. Chen, Z. H., Liu, X. J., Guo, Q. L., et al., 2017. Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 194: 91–101. doi:10.1016/j.fuel.2016.12.052CrossRefGoogle Scholar
  25. Chung, H. M., Gormly, J. R., Squires, R. M., 1988. Origin of Gaseous Hydrocarbons in Subsurface Environments: Theoretical Considerations of Carbon Isotope Distribution. Chemical Geology, 71(1/2/3): 97–104. doi:10.1016/0009-2541(88)90108-8CrossRefGoogle Scholar
  26. Clayton, C., 1991. Carbon Isotope Fractionation during Natural Gas Generation from Kerogen. Marine and Petroleum Geology, 8(2): 232–240. doi:10.1016/0264-8172(91)90010-xCrossRefGoogle Scholar
  27. Clayton, J. L., 1998. Geochemistry of Coalbed Gas––A Review. International Journal of Coal Geology, 35(1/2/3/4): 159–173. doi:10.1016/s0166-5162(97)00017-7CrossRefGoogle Scholar
  28. Coleman, D., Liu, C.-L., Hackley, K. C., et al., 1993. Isotopic Identification of Landfill Methane. Environmental Geosciences, 2(2): 95–103Google Scholar
  29. Cooles, G. P., MacKenzie, A. S., Quigley, T. M., 1986. Calculation of Petroleum Masses Generated and Expelled from Source Rocks. Organic Geochemistry, 10(1/2/3): 235–245. doi:10.1016/0146-6380(86)90026-4CrossRefGoogle Scholar
  30. Cornelius, C. D., 1978. Muttergesteinfaziesals Parameter der Erdölbildung. Erdöl-ErdgasZeitschrift, 3: 90–94Google Scholar
  31. Cornford, C., 2009. Source Rocks and Hydrocarbons of the North Sea, Chapter 11. In: Glennie, K. W., ed., Petroleum Geology of the North Sea, Basic Concepts and Recent Advances: Fourth Edition. Blackwell Science Ltd, Oxford. 376–462. doi:10.1002/9781444313413.ch11Google Scholar
  32. Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921–1938. doi:10.1306/61eeddbe-173e-11d7-8645000102c1865dGoogle Scholar
  33. Dai, J. X., Zou, C. N., Dong, D. Z., et al., 2016. Geochemical Characteristics of Marine and Terrestrial Shale Gas in China. Marine and Petroleum Geology, 76(9): 444–463. doi:10.1016/j.marpetgeo.2016.04.027CrossRefGoogle Scholar
  34. Darrah, T. H., Vengosh, A., Jackson, R. B., et al., 2014. Noble Gases Identify the Mechanisms of Fugitive Gas Contamination in Drinking-Water Wells Overlying the Marcellus and Barnett Shales. Proceedings of the National Academy of Sciences, 111(39): 14076–14081. doi:10.1073/pnas.1322107111CrossRefGoogle Scholar
  35. Delvaux, D., Martin, H., Leplat, P., et al., 1990. Comparative Rock-Eval Pyrolysis as an Improved Tool for Sedimentary Organic Matter Analysis. Organic Geochemistry, 16(4/5/6): 1221–1229. doi:10.1016/0146-6380(90)90157-uCrossRefGoogle Scholar
  36. Dembicki, H. Jr., Horsfield, B., Ho, T. T. Y., 1983. Source Rock Evaluation by Pyrolysis-Gas Chromatography. AAPG Bulletin, 67: 1094–1103. doi:10.1306/03b5b709-16d1-11d7-8645000102c1865dGoogle Scholar
  37. Du, J. G., Jin, Z. J., Xie, H. S., et al., 2003. Stable Carbon Isotope Compositions of Gaseous Hydrocarbons Produced from High Pressure and High Temperature Pyrolysis of Lignite. Organic Geochemistry, 34(1): 97–104. doi:10.1016/s0146-6380(02)00158-4CrossRefGoogle Scholar
  38. Espitalié, J., Deroo, G., Marquis, F., 1986. La Pyrolyse Rock-Eval et Ses Applications. Troisième Partie. Revue de l’Institut Français du Pétrole, 41(1): 73–89. doi:10.2516/ogst:1986003CrossRefGoogle Scholar
  39. Espitalié, J., Laporte, J. L., Madec, M., et al., 1977. Méthode Rapide de Caractérisation des Roches Mètres, de Leur Potentiel Pétrolier et de Leur Degré D’évolution. Revue de l’Institut Français du Pétrole, 32(1): 23–42. doi:10.2516/ogst:1977002CrossRefGoogle Scholar
  40. Espitalié, J., Madec, M., Tissot, B., 1980. Role of Mineral Matrix in Kerogen Pyrolysis: Influence on Petroleum Generation and Migration. AAPG Bulletin, 64: 59–66. doi:10.1306/2f918928-16ce-11d7-8645000102c1865dGoogle Scholar
  41. Espitalié, J., Madec, M., Tissot, B., 1984. Geochemical Logging. In: Voorhees, K. J. ed., Analytical Pyrolysis-Techniques and Applications. Boston, Butterworth. 276–304CrossRefGoogle Scholar
  42. Espitalié, J., Marquis, F., Sage, L., 1987. Organic Geochemistry of the Paris Basin. In: Brooks, J., Glennie, K. eds., Petroleum Geology of North-West Europe, Graham and Totman, London. 71–86Google Scholar
  43. Feng, Z. Q., Liu, D., Huang, S. P., et al., 2016. Carbon Isotopic Composition of Shale Gas in the Silurian Longmaxi Formation of the Changning Area, Sichuan Basin. Petroleum Exploration and Development, 43(5): 769–777. doi:10.1016/s1876-3804(16)30092-1CrossRefGoogle Scholar
  44. Filby, R. H., van Berkel, G. J., 1987. Geochemistry of Metal Complexes in Petroleum, Source Rocks and Coals: An Overview. In: Filby, R. H., ed., Metal Complexes in Fossil Fuels. American Chemical Society, Washington DC. 2–39CrossRefGoogle Scholar
  45. Forsman, J. P., 1963. Geochemistry of Kerogen. Organic Geochemistry. Breger, I. A., ed., Pergamon Press, New York. 148–182Google Scholar
  46. Gallegos, E. J., 1975. Terpane-Sterane Release from Kerogen by Pyrolysis Gas Chromatography-Mass Spectrometry. Analytical Chemistry, 47(9): 1524–1528. doi:10.1021/ac60359a053CrossRefGoogle Scholar
  47. Gentzis, T., Goodarzi, F., 1994. Reflectance Suppression in Some Cretaceous Coals from Alberta, Canada. In: Mukhopadhyay, P. K., Dow, W. G., eds., Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations. Symposium Series, ACS, Washington, DC. 570: 93–110CrossRefGoogle Scholar
  48. Goddard, W. A., Tang, Y., Wu, S., et al., 2013. Novel Gas Isotope Interpretation Tools to Optimize Gas Shale Production. Research Partnership to Secure Energy for America, Report No. 08122.15, Washington, DC. 90Google Scholar
  49. Golding, S. D., Boreham, C. J., Esterle, J. S., 2013. Stable Isotope Geochemistry of Coal Bed and Shale Gas and Related Production Waters: A Review. International Journal of Coal Geology, 120: 24–40. doi:10.1016/j.coal.2013.09.001CrossRefGoogle Scholar
  50. Goodarzi, F., 1985. Organic Petrology of Hat Creek Coal Deposit No. 1, British Columbia. International Journal of Coal Geology, 5(4): 377–396. doi:10.1016/0166-5162(85)90003-5CrossRefGoogle Scholar
  51. Goodarzi, F., 1987. Comparison of Reflectance Data from Various Macerals from Sub-Bituminous Coals. Journal of Petroleum Geology, 10(2): 219–226. doi:10.1111/j.1747-5457.1987.tb00211.xCrossRefGoogle Scholar
  52. Goodarzi, F., Gentzis, T., Feinstein, S., et al., 1988. Effect of Maceral Subtypes and Mineral Matrix on Measured Reflectance of Subbituminous Coals and Dispersed Organic Matter. International Journal of Coal Geology, 10(4): 383–398. doi:10.1016/0166-5162(88)90011-0CrossRefGoogle Scholar
  53. Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The “North American Shale Composite”: Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469–2482. doi:10.1016/0016-7037(84)90298-9CrossRefGoogle Scholar
  54. Gurba, L. W., Ward, C. R., 1998. Vitrinite Reflectance Anomalies in the High-Volatile Bituminous Coals of the Gunnedah Basin, New South Wales, Australia. International Journal of Coal Geology, 36(1/2): 111–140. doi:10.1016/s0166-5162(97)00033-5CrossRefGoogle Scholar
  55. Hackley, P. C., Araujo, C. V., Borrego, A. G., et al., 2015. Standardization of Reflectance Measurements in Dispersed Organic Matter: Results of an Exercise to Improve Interlaboratory Agreement. Mar. Pet. Geol., 59: 22–34CrossRefGoogle Scholar
  56. Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8–51. doi:10.1016/j.coal.2016.06.010CrossRefGoogle Scholar
  57. Hackley, P. C., Guevara, E. H., Hentz, T. F., et al., 2009. Thermal Maturity and Organic Composition of Pennsylvanian Coals and Carbonaceous Shales, North-Central Texas: Implications for Coalbed Gas Potential. International Journal of Coal Geology, 77(3/4): 294–309. doi:10.1016/j.coal.2008.05.006CrossRefGoogle Scholar
  58. Hackley, P. C., Ryder, R. T., Trippi, M. H., et al., 2013. Thermal Maturity of Northern Appalachian Basin Devonian Shales: Insights from Sterane and Terpane Biomarkers. Fuel, 106: 455–462. doi:10.1016/j.fuel.2012.12.032CrossRefGoogle Scholar
  59. Hakimi, M. H., Abdullah, W. H., 2014. Biological Markers and Carbon Isotope Composition of Organic Matter in the Upper Cretaceous Coals and Carbonaceous Shale Succession (Jiza-Qamar Basin, Yemen): Origin, Type and Preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 409: 84–97. doi:10.1016/j.palaeo.2014.04.022CrossRefGoogle Scholar
  60. Hakimi, M. H., Abdullah, W. H., Shalaby, M. R., et al., 2014. Geochemistry and Organic Petrology Study of Kimmeridgian Organic-Rich Shales in the Marib-Shabowah Basin, Yemen: Origin and Implication for Depositional Environments and Oil-Generation Potential. Marine and Petroleum Geology, 50: 185–201. doi:10.1016/j.marpetgeo.2013.09.012CrossRefGoogle Scholar
  61. Hakimi, M. H., Ahmed, A. F., Abdullah, W. H., 2016. Organic Geochemical and Petrographic Characteristics of the Miocene Salif Organic-Rich Shales in the Tihama Basin, Red Sea of Yemen: Implications for Paleoenvironmental Conditions and Oil-Generation Potential. International Journal of Coal Geology, 154/155: 193–204. doi:10.1016/j.coal.2016.01.004CrossRefGoogle Scholar
  62. Hao, F., Chen, J. Y., 1992. The Cause and Mechanism of Vitrinite Reflectance Anomalies. Journal of Petroleum Geology, 15(4): 419–434. doi:10.1111/j.1747-5457.1992.tb01043.xCrossRefGoogle Scholar
  63. Harrington, J., Whyte, C., Muehlenbachs, K., et al., 2015. Using Noble Gas and Hydrocarbon Gas Geochemistry to Source the Origin of Fluids in the Eagle Ford Shale of Texas, USA. Presented at AAPG Annual Convention & Exhibition, May 31–June 3, 2015, Denver, Colorado. 1–31Google Scholar
  64. Hartkopf-Fröder, C., Königshof, P., Littke, R., et al., 2015. Optical Thermal Maturity Parameters and Organic Geochemical Alteration at Low Grade Diagenesis to Anchimetamorphism: A Review. International Journal of Coal Geology, 150/151: 74–119. doi:10.1016/j.coal.2015.06.005CrossRefGoogle Scholar
  65. Hazra, B., Dutta, S., Kumar, S., 2017. TOC Calculation of Organic Matter Rich Sediments Using Rock-Eval Pyrolysis: Critical Consideration and Insights. International Journal of Coal Geology, 169: 106–115. doi:10.1016/j.coal.2016.11.012CrossRefGoogle Scholar
  66. Hazra, B., Varma, A. K., Bandopadhyay, A. K., et al., 2015. Petrographic Insights of Organic Matter Conversion of Raniganj Basin Shales, India. International Journal of Coal Geology, 150/151: 193–209. doi:10.1016/j.coal.2015.09.001CrossRefGoogle Scholar
  67. Hunt, J. M., 1972. Distribution of Carbon in Crust of Earth: Geological Notes. AAPG Bulletin, 56: 2273–2277. doi:10.1306/819a4206-16c5-11d7-8645000102c1865dGoogle Scholar
  68. Hunt, J. M., 1996. Petroleum Geochemistry and Geology. W. H. Freeman and Company, New YorkGoogle Scholar
  69. Hutton, A. C., Cook, A. C., 1980. Influence of Alginite on the Reflectance of Vitrinite from Joadja, NSW, and some other Coals and Oil Shales Containing Alginite. Fuel, 59(10): 711–714. doi:10.1016/0016-2361(80)90025-3CrossRefGoogle Scholar
  70. Iglesias, M. J., del Rı́o, J. C., Laggoun-Défarge, F., et al., 2002. Control of the Chemical Structure of Perhydrous Coals; FTIR and Py-GC/MS Investigation. Journal of Analytical and Applied Pyrolysis, 62(1): 1–34. doi:10.1016/s0165-2370(00)00209-6CrossRefGoogle Scholar
  71. International Committee for Coal Petrology (ICCP), 1971. International Handbook of Coal Petrography, 1st Supplement to 2nd Edition. CNRS, ParisGoogle Scholar
  72. Jarvie, D. M., 2012a. Shale Resource Systems for Oil and Gas: Part 1—Shale-Gas Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs— Giant Resources for the 21st Century. AAPG Memoir, 97: 69–87Google Scholar
  73. Jarvie, D. M., 2012b. Shale Resource Systems for Oil and Gas: Part 2 — Shale-Oil Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs— Giant Resources for the 21st Century. AAPG Memoir, 97: 89–119Google Scholar
  74. Jarvie, D. M., 2014. Components and Processes Affecting Producibility and Commerciality of Shale Resource Systems. Geologica Acta, Alago Special Publicatio, 12(4): 307–325. doi:10.1344/GeologicaActa2014.12.4.3Google Scholar
  75. Jarvie, D. M., Claxton, B. L., Henk, F., et al., 2001. Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas. In: Abstract, AAPG Annual Meeting Program, June 3–6, 2001. Denver. 10: A100Google Scholar
  76. Jarvie, D. M., Hill, R. J., Pollastro, R. M., 2005. Pollastro, R. M., 2005. Assessment of the Gas Potential and Yields from Shales: The Barnett Shale Model. In: Cardott, B. J., ed., Unconventional Energy Resources in the Southern Midcontinent, 2004 Symposium. Oklahoma Geological Survey Circular, 110: 37–50Google Scholar
  77. Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475–499. doi:10.1306/12190606068CrossRefGoogle Scholar
  78. Jarvie, D. M., Lundell, L. L., 1991. Hydrocarbon Generation Modeling of Naturally and Artificially Matured Barnett Shale, Fort Worth Basin, Texas. Southwest Regional Geochemistry Meeting, September 8–9, 1991, the Woodlands, Texas. [2016-02-14]. Scholar
  79. Jia, W., Segal, E., Kornemandel, D., et al., 2002. Polyaniline-DBSA/Organophilic Clay Nanocomposites: Synthesis and Characterization. Synthetic Metals, 128(1): 115–120. doi:10.1016/s0379-6779(01)00672-5CrossRefGoogle Scholar
  80. Jones, J., Murchison, D. G., Saleh, S., 1972. Variation of Vitrinite Reflectivity in Relation to Lithology. In: Gaertner, H. W., Wehner, H., eds., Advances in Organic Geochemistry 1971. Pergamon Press, Oxford. 601–612Google Scholar
  81. Kalkreuth, W. D., 1982. Rank and Petrographic Composition of Selected Jurassic–Lower Cretaceous Coals of British Columbia, Canada. Can. Petrol. Geol. Bull., 30: 112–139Google Scholar
  82. Kalkreuth, W., Macauley, G., 1984. The Organic Petrology of Selected Oil Shale Samples from the Lower Carboniferous Albert Formation, New Brunswick, Canada. Bulletin of Canadian Petroleum Geology, 32(1): 38–51Google Scholar
  83. Kalkreuth, W., Macauley, G., 1987. Organic Petrology and Geochemical (Rock-Eval) Studies on Oil Shales and Coals from the Pictou and Antigonish Areas, Nova Scotia, Canada. Bull. Can. Petrol. Geol., 35: 263–295Google Scholar
  84. Keil, R. G., Cowie, G. L., 1999. Organic Matter Preservation through the Oxygen-Deficient Zone of the NE Arabian Sea as Discerned by Organic Carbon: Mineral Surface Area Ratios. Marine Geology, 161(1): 13–22. doi:10.1016/s0025-3227(99)00052-3CrossRefGoogle Scholar
  85. Keil, R. G., Montluçon, D. B., Prahl, F. G., et al., 1994. Sorptive Preservation of Labile Organic Matter in Marine Sediments. Nature, 370(6490): 549–552. doi:10.1038/370549a0CrossRefGoogle Scholar
  86. Kelley, K. D., Graham, G. E., Benzel, W. M., 2015. Extent of Metalliferous Intervals and Principal Hosts of Mo, Ni, V, and Zn in Oil Shale of the Mississippian Heath Formation, Montana, USA. In: André-Mayer, A.-S., Cathelineau, M., Muehez, P., et al., eds., Mineral Resources in a Sustainable World. Proceedings of 13th Biennial Mtg., Society for Geology Applied to Mineral Deposits (SGA), August 24–27, 2015, Nancy, France. 4: 1937–1940Google Scholar
  87. Kennedy, M. J., Löhr, S. C., Fraser, S. A., et al., 2014. Direct Evidence for Organic Carbon Preservation as Clay-Organic Nanocomposites in a Devonian Black Shale: From Deposition to Diagenesis. Earth and Planetary Science Letters, 388: 59–70. doi:10.1016/j.epsl.2013.11.044CrossRefGoogle Scholar
  88. Kennedy, M. J., Pevear, D., Hill, R., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295(5555): 657–660. doi:10.1126/science.1066611CrossRefGoogle Scholar
  89. Kennedy, M. J., Wagner, T., 2011. Clay Mineral Continental Amplifier for Marine Carbon Sequestration in a Greenhouse Ocean. Proceedings of the National Academy of Sciences, 108(24): 9776–9781. doi:10.1073/pnas.1018670108CrossRefGoogle Scholar
  90. Ketris, M. P., Yudovich, Y. E., 2009. Estimations of Clarkes for Carbonaceous Biolithes: World Averages for Trace Element Contents in Black Shales and Coals. International Journal of Coal Geology, 78(2): 135–148. doi:10.1016/j.coal.2009.01.002CrossRefGoogle Scholar
  91. Khorasani, G. K., Michelsen, J. K., 1994. The Effects of Overpressure, Lithology, Chemistry and Heating Rate on Vitrinite Reflectance Evolution, and Its Relationship with Oil Generation. APEA J., 34 (Pt. 1): 418–434CrossRefGoogle Scholar
  92. Kimble, B. J., Maxwell, J. R., Philp, R. P., et al., 1974. Tri-and Tetraterpenoid Hydrocarbons in the Messel Oil Shale. Geochimica et Cosmochimica Acta, 38(7): 1165–1181. doi:10.1016/0016-7037(74)90011-8CrossRefGoogle Scholar
  93. Klaja, J., Dudek, L., 2016. Geological Interpretation of Spectral Gamma Ray (SGR) Logging in Selected Boreholes. Nafta-Gaz, 72(1): 3–14. doi:10.18668/ng2016.01.01CrossRefGoogle Scholar
  94. Koŝina, M., Heppner, P., 1985. Macerals in Bituminous Coals and the Coking Process, 2. Coal Mass Properties and the Coke Mechanical Properties. Fuel, 64: 53–58CrossRefGoogle Scholar
  95. Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Revue de l'Institut Français du Pétrole, 53(4): 421–437. doi:10.2516/ogst:1998036CrossRefGoogle Scholar
  96. Laughrey, C. D., 2014. Introductory Geochemistry for Shale Gas, Condensate-Rich Shales and Tight Oil Reservoirs. URTeC Annual Meeting Short Course, Colorado Convention Center, August 2014, Denver, Colorado. 325Google Scholar
  97. Leischner, K., Welte, D. H., Littke, R., 1993. Fluid Inclusions and Organic Maturity Parameters as Calibration Tools in Basin Modeling. In: Dore, A. G., ed., Basin Modeling: Advances and Applications: NPF Special Publication, 3. Elsevier, Amsterdam. 161–172Google Scholar
  98. Leventhal, J. S., 1998. Metal-Rich Black Shales: Formation, Economic Geology and Environmental Considerations. In: Schieber, J., Zimmerle, W., Sethi, P., eds., Shales and Mudstones II. E. Schweizerbart’sche Verlagsbuchhandlung StuttgartGoogle Scholar
  99. Lewan, M. D., Henry, M. E., Higley, D. K., et al., 2002. Material-Balance Assessment of the New Albany-Chesterian Petroleum System of the Illinois Basin. AAPG Bulletin, 86: 745–777. doi:10.1306/61eedb8e-173e-11d7-8645000102c1865dGoogle Scholar
  100. Little, S. H., Vance, D., Lyons, T. W., et al., 2015. Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. American Journal of Science, 315(2): 77–119. doi:10.2475/02.2015.01CrossRefGoogle Scholar
  101. Martini, A. M., Walter, L. M., Ku, T. C. W., et al., 2003. Microbial Production and Modification of Gases in Sedimentary Basins: A Geochemical Case Study from a Devonian Shale Gas Play, Michigan Basin. AAPG Bulletin, 87(8): 1355–1375. doi:10.1306/031903200184CrossRefGoogle Scholar
  102. Mayer, L. M., 1994. Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments. Geochimica et Cosmochimica Acta, 58(4): 1271–1284. doi:10.1016/0016-7037(94)90381-6CrossRefGoogle Scholar
  103. McCarthy, K. R., Niemann, M., Palmowski, D., et al., 2011. Basic Petroleum Geochemistry for Source Rock Evaluation. Oilfield Review, 23(2): 32–43Google Scholar
  104. Moore, T. A., Bowe, M., Nas, C., 2014. High Heat Flow Effects on a Coalbed Methane Reservoir, East Kalimantan (Borneo), Indonesia. International Journal of Coal Geology, 131: 7–31. doi:10.1016/j.coal.2014.05.012CrossRefGoogle Scholar
  105. Mukhopadhyay, P. K., 1994. Vitrinite Reflectance as Maturity Parameter: Petrographic and Molecular Characterization and Its Applications to Basin Modeling. In: Mukhopadhyay, P. K., Dow, W. G., eds., Vitrinite Reflectance as a Maturity Parameter. ACS Symposium Series, 570: 1–25Google Scholar
  106. Mukhopadhyay, P. K., Dow, W. G., 1994. A Review of “Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations”. ACS Symposium Series, 570: 294Google Scholar
  107. Newman, J., Newman, N. A., 1982. Reflectance Anomalies in Pike River Coals: Evidence of Variability in Vitrinite Type, with Implications for Maturation Studies and “Suggate Rank”. New Zealand Journal of Geology and Geophysics, 25(2): 233–243. doi:10.1080/00288306.1982.10421412CrossRefGoogle Scholar
  108. Obermajer, M., Fowler, M. G., Snowdon, L. R., 1999. Depositional Environment and Oil Generation in Ordovician Source Rocks from Southwestern Ontario, Canada: Organic Geochemical and Petrological Approach. AAPG Bulletin, 83: 1426–1453. doi:10.1306/e4fd41d9-1732-11d7-8645000102c1865dGoogle Scholar
  109. Ocampo, R., Callot, H. J., Albrecht, P., 1987. Evidence for Porphyrins of Bacterial and Algal Origin in Oil Shale. In: Filby, R. H., ed., Metal Complexes in Fossil Fuels. American Chemical Society, Washington DCGoogle Scholar
  110. Ohkouchi, N., Kuroda, J., Taira, A., 2015. The Origin of Cretaceous Black Shales: A Change in the Surface Ocean Ecosystem and Its Triggers. Proceedings of the Japan Academy, Series B, 91(7): 273–291. doi:10.2183/pjab.91.273CrossRefGoogle Scholar
  111. Osborn, S. G., McIntosh, J. C., 2010. Chemical and Isotopic Tracers of the Contribution of Microbial Gas in Devonian Organic-Rich Shales and Reservoir Sandstones, Northern Appalachian Basin. Applied Geochemistry, 25(3): 456–471. doi:10.1016/j.apgeochem.2010.01.001CrossRefGoogle Scholar
  112. Ostera, H. A., García, R., Malizia, D., et al., 2016. Shale Gas Plays, Neuquén Basin, Argentina: Chemostratigraphy and Mud Gas Carbon Isotopes Insights. Brazilian Journal of Geology, 46(Suppl. 1): 181–196. doi:10.1590/2317-4889201620150001CrossRefGoogle Scholar
  113. Othman, R., Ward, C. R., 2002. Thermal Maturation Pattern in the Southern Bowen, Northern Gunnedah and Surat Basins, Northern New South Wales, Australia. International Journal of Coal Geology, 51(3): 145–167. doi:10.1016/s0166-5162(02)00082-4CrossRefGoogle Scholar
  114. Peters, K. E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70: 318–329. doi:10.1306/94885688-1704-11d7-8645000102c1865dGoogle Scholar
  115. Peters, K. E., Cassa, M. R., 1994. Applied Source Rock Geochemistry. In: Magoon, L. B., Dow, W. G., eds., The Petroleum System from Source to Trap. AAPG Memoir, 60: 93–120Google Scholar
  116. Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide, 2nd Ed., Vol. 2. Cambridge University Press, CambridgeGoogle Scholar
  117. Petersen, H. I., Vosgerau, H., 1999. Composition and Organic Maturity of Middle Jurassic Coals, North-East Greenland: Evidence for Liptinite-Induced Suppression of Huminite Reflectance. International Journal of Coal Geology, 41(3): 257–274. doi:10.1016/s0166-5162(99)00022-1CrossRefGoogle Scholar
  118. Pillot, D., Letort, G., Romero-Sarmiento, M. F., et al., 2014. Procédé Pour l’Évaluation d’Aumoins unecaractéristiquepétrolière d’un échantillon de Roche. Patent 14/55.009Google Scholar
  119. Pittion, J. L., Gouadain, J., 1985. Maturity Studies of the Jurassic ‘Coal Unit’ in Three Wells from the Haltenbanken Area. In: Thomas, B. M., ed., Petroleum Geochemistry in Exploration of the Norwegian Shelf. Graham and Trotman, London. 205–211CrossRefGoogle Scholar
  120. Price, L. C., Baker, C. E., 1985. Suppression of Vtrinite Reflectance in Amorphous Rich Kerogen––A Major Unrecognized Problem. Journal of Petroleum Geology, 8(1): 59–84. doi:10.1111/j.1747-5457.1985.tb00191.xCrossRefGoogle Scholar
  121. Prinzhofer, A., 2012. Noble Gases in Oil and Gas Accumulations, Chapter 9. In: Burnard, P., ed., Noble Gases as Geochemical Tracers. Springer, New York. 225–247Google Scholar
  122. Qu, Z. Y., Sun, J. N., Shi, J. T., et al., 2016. Characteristics of Stable Carbon Isotopic Composition of Shale Gas. Journal of Natural Gas Geoscience, 1(2): 147–155. doi:10.1016/j.jnggs.2016.05.008CrossRefGoogle Scholar
  123. Quirke, J. M. E., 1987. Rationalization for the Predominance of Nickel and Vanadium Porphyrins in the Geosphere. In: Filby, R. H., ed., Metal Complexes in Fossil Fuels. American Chemical Society, Washington DCGoogle Scholar
  124. Ransom, B., Bennett, R. H., Baerwald, R., et al., 1997. TEM Study of in Situ Organic Matter on Continental Margins: Occurrence and the “Monolayer” Hypothesis. Marine Geology, 138(1/2): 1–9. doi:10.1016/s0025-3227(97)00012-1CrossRefGoogle Scholar
  125. Ransom, B., Kim, D., Kastner, M., et al., 1998. Organic Matter Preservation on Continental Slopes: Importance of Mineralogy and Surface Area. Geochimica et Cosmochimica Acta, 62(8): 1329–1345. doi:10.1016/s0016-7037(98)00050-7CrossRefGoogle Scholar
  126. Ratcliffe, K. T., Wright, A. M., Schmidt, K., 2012. Application of Inorganic Whole-Rock Geochemistry to Shale Resource Plays: An Example from the Eagle Ford Formation, Texas. The Sedimentary Record, 10(2): 4–9. doi:10.2110/sedred.2012.2.4CrossRefGoogle Scholar
  127. Raymond, A. C., Murchison, D. G., 1991. Influence of Exinitic Macerals on the Reflectance of Vitrinite in Carboniferous Sediments of the Midland Valley of Scotland. Fuel, 70(2): 155–161. doi:10.1016/0016-2361(91)90146-2CrossRefGoogle Scholar
  128. Rice, D. D., 1993. Composition and Origins of Coalbed Gas. In: Law, B. E., Rice, D. D., eds., Hydrocarbons from Coal. Studies in Geology, AAPG, 38: 159–184Google Scholar
  129. Rivera, K., Quan, T. M., 2014. Thermal Maturation Effects on the Nitrogen Isotopes in Marine Shales: A Case Study of the Woodford Shale. Conference Paper, AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania, May 19–22, 2013. Article #50920Google Scholar
  130. Robert, P., 1980. The Optical Evolution of Kerogen and Geothermal Histories Applied to Oil and Gas Exploration. In: Durand, B., ed., Kerogen. Technip, Paris. 385–414Google Scholar
  131. Robin, P. L., 1975. Caracterisation des Kerogenes et de Leur Evolution par Spectroscopie in Frarouge: [Dissertation]. University Louvain, ParisGoogle Scholar
  132. Romero-Sarmiento, M.-F., Pillot, D., Letort, G., et al., 2016. New Rock-Eval Method for Characterization of Unconventional Shale Resource Systems. Oil & Gas Science and Technology––Revue d’IFP Energies nouvelles, 71(3): 37. doi:10.2516/ogst/2015007CrossRefGoogle Scholar
  133. Romero-Sarmiento, M.-F., Rouzaud, J. N., Bernard, S., et al., 2014. Evolution of Barnett Shale Organic Carbon Structure and Nanostructure with Increasing Maturation. Organic Geochemistry, 71: 7–16. doi:10.1016/j.orggeochem.2014.03.008CrossRefGoogle Scholar
  134. Salmon, V., Derenne, S., Lallier-Vergès, E., et al., 2000. Protection of Organic Matter by Mineral Matrix in a Cenomanian Black Shale. Organic Geochemistry, 31(5): 463–474. doi:10.1016/s0146-6380(00)00013-9CrossRefGoogle Scholar
  135. Satterberg, J., Arnarson, T. S., Lessard, E. J., et al., 2003. Sorption of Organic Matter from Four Phytoplankton Species to Montmorillonite, Chlorite and Kaolinite in Seawater. Marine Chemistry, 81(1/2): 11–18. doi:10.1016/s0304-4203(02)00136-6CrossRefGoogle Scholar
  136. Schmoker, J. W., 1995. Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. In: Gautier, D. L., Dolton, G. L., Takahashi, K. I., et al., eds., 1995 National Assessment of United States Oil and Gas Resources––Results, Methodology, and Supporting Data. U.S. Geological Survey Digital Data Series 30: CD-ROMGoogle Scholar
  137. Schoell, M., 1983. Genetic Characterization of Natural Gases. American Association of Petroleum Geologists Bulletin, 67: 2225–2238Google Scholar
  138. Scott, C., Slack, J. F., Kelley, K. D., 2017. The Hyper-Enrichment of V and Zn in Black Shales of the Late Devonian-Early Mississippian Bakken Formation (USA). Chemical Geology, 452: 24–33. doi:10.1016/j.chemgeo.2017.01.026CrossRefGoogle Scholar
  139. Seifert, W. K., 1978. Application of Steranes and Terpanes in Kerogen Pyrolysis for Correlation of Oils and Source Rocks. Geochimica et Cosmochimica Acta, 42(5): 473–484. doi:10.1016/0016-7037(78)90197-7CrossRefGoogle Scholar
  140. Seifert, W. K., Moldowan, J. M., 1986. Use of Biomarkers in Petroleum Exploration. In: Johns, R. B., ed., Methods in Geochemistry and Geophysics, Vol. 24. Elsevier, Amsterdam. 261–290Google Scholar
  141. Snowdon, L. R., 1995. Rock-Eval T max Suppression: Documentation and Amelioration. AAPG Bulletin, 79: 1337–1348. doi:10.1306/7834d4c2-1721-11d7-8645000102c1865dGoogle Scholar
  142. Sposito, G., Skipper, N. T., Sutton, R., et al., 1999. Surface Geochemistry of the Clay Minerals. Proceedings of the National Academy of Sciences, 96(7): 3358–3364. doi:10.1073/pnas.96.7.3358CrossRefGoogle Scholar
  143. Stach, E., Mackowsky, M.-Th., Teichmüller, M., et al., 1982. Stach’s Textbook of Coal Petrology: 3rd Ed. Gebrüder Borntraeger, Berlin-Stuttgart. 535Google Scholar
  144. Stahl, W. J., 1977. Carbon and Nitrogen Isotopes in Hydrocarbon Research and Exploration. Chemical Geology, 20: 121–149. doi:10.1016/0009-2541(77)90041-9CrossRefGoogle Scholar
  145. Strąpoć, D., Mastalerz, M., Schimmelmann, A., et al., 2010. Geochemical Constraints on the Origin and Volume of Gas in the New Albany Shale (Devonian–Mississippian), Eastern Illinois Basin. AAPG Bulletin, 94(11): 1713–1740. doi:10.1306/06301009197CrossRefGoogle Scholar
  146. Suárez-Ruiz, I., Flores, D., Mendonça Filho, J. G., et al., 2012. Review and Update of the Applications of Organic Petrology: Part 1, Geological Applications. International Journal of Coal Geology, 99: 54–112. doi:10.1016/j.coal.2012.02.004CrossRefGoogle Scholar
  147. Suárez-Ruiz, I., Iglesias, M. J., Jiménez Bautista, A., et al., 1994a. Petrographic and Geochemical Anomalies Detected in the Spanish Jurassic Jet. In: Mukhopadhyay, P. K., Dow, W. G., eds., Vitrinite Reflectance as a Maturity Parameter. Applications and Limitations. American Chemical Society Symposium Series, 570, Chapter 6. ACS Books. 76–92Google Scholar
  148. Suárez-Ruiz, I., Jimenez, A., Iglesias, M. J., et al., 1994b. Influence of Resinite on Huminite Properties. Energy & Fuels, 8(6): 1417–1424. doi:10.1021/ef00048a033CrossRefGoogle Scholar
  149. Sun, X., Zhang, T. W., Sun, Y. G., et al., 2016. Geochemical Evidence of Organic Matter Source Input and Depositional Environments in the Lower and Upper Eagle Ford Formation, South Texas. Organic Geochemistry, 98: 66–81. doi:10.1016/j.orggeochem.2016.05.018CrossRefGoogle Scholar
  150. Sweeney, J. J., Burnham, A.K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics (1). AAPG Bulletin, 74(10): 1559–1570. doi:10.1306/0c9b251f-1710-11d7-8645000102c1865dGoogle Scholar
  151. Sykes, R., Snowdon, L. R., 2002. Guidelines for Assessing the Petroleum Potential of Coaly Source Rocks Using Rock-Eval Pyrolysis. Organic Geochemistry, 33(12): 1441–1455. doi:10.1016/s0146-6380(02)00183-3CrossRefGoogle Scholar
  152. Tang, X. L., Jiang, Z. X., Huang, H. X., et al., 2016. Lithofacies Characteristics and Its Effect on Gas Storage of the Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 338–346. doi:10.13039/501100001809CrossRefGoogle Scholar
  153. Tang, Y., Jenden, P. D., Nigrini, A., et al., 1996. Modeling Early Methane Generation in Coal. Energy & Fuels, 10(3): 659–671. doi:10.1021/ef950153lCrossRefGoogle Scholar
  154. Tang, Y., Perry, J. K., Jenden, P. D., et al., 2000. Mathematical Modeling of Stable Carbon Isotope Ratios in Natural Gases. Geochimica et Cosmochimica Acta, 64(15): 2673–2687. doi:10.1016/s0016-7037(00)00377-xCrossRefGoogle Scholar
  155. Taylor, G. H., 1996. The Electron Microscopy of Vitrinites. In: Given, P. H., ed., Papers of Conf. Coal Science, Advances in Chemistry Series 55. American Chemical Society, Washington DC. 274–283Google Scholar
  156. Taylor, G. H., Teichmuller, M., Davis, A., 1998. Organic Petrology: Chapter 7. Gebrüder Borntraeger, BerlinGoogle Scholar
  157. Teichmüller, M., 1987. Recent Advances in Coalification Studies and Their Application to Geology. Geological Society, London, Special Publications, 32(1): 127–169. doi:10.1144/gsl.sp.1987.032.01.09CrossRefGoogle Scholar
  158. Tewari, A., Dutta, S., Sarkar, T., 2016. Organic Geochemical Characterization and Shale Gas Potential of the Permian Barren Measures Formation, West Bokaro Sub-Basin, Eastern India. Journal of Petroleum Geology, 39(1): 49–60. doi:10.1111/jpg.12627CrossRefGoogle Scholar
  159. Theng, B. K. G., Churchman, G. J., Newman, R. H., 1986. The Occurrence of Interlayer Clay-Organic Complexes in Two New Zealand Soils. Soil Science, 142(5): 262–266. doi:10.1097/00010694-198611000-00003CrossRefGoogle Scholar
  160. Tilley, B., Muehlenbachs, K., 2013. Isotope Reversals and Universal Stages and Trends of Gas Maturation in Sealed, Self-Contained Petroleum Systems. Chemical Geology, 339: 194–204. doi:10.1016/j.chemgeo.2012.08.002CrossRefGoogle Scholar
  161. Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence: 2nd Ed. Springer-Verlag, Berlin, Heidelberg, New York, TokyoCrossRefGoogle Scholar
  162. Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  163. Tissot, B. P., Pelet, R., Ungerer, P., 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71: 1445–1466. doi:10.1306/703c80e7-1707-11d7-8645000102c1865dGoogle Scholar
  164. Trabelsi, K., Espitalié, J., Huc, A.-Y., 1994. Characterization of Extra Heavy Oils and Tar Deposits by Modified Pyrolysis Methods. Proceedings of the “Heavy Oil Technologies in a Wider Europe”, Thermie EC Symposium, Berlin. 30–40Google Scholar
  165. Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32. doi:10.1016/j.chemgeo.2006.02.012CrossRefGoogle Scholar
  166. Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 434–446. doi:10.1016/j.jngse.2015.12.003CrossRefGoogle Scholar
  167. Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the Elements in some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72(2): 175. doi:10.1130/0016-7606(1961)72[175:doteis];2CrossRefGoogle Scholar
  168. van Krevelen, D. W., 1961. Coal: Typology-Chemistry-Physics-Constitution: 1st Ed. Elsevier, Amsterdam. 514Google Scholar
  169. van Krevelen, D. W., 1993. Coal: Typology-Chemistry-Physics-Constitution: 3rd Ed. Elsevier, Amsterdam. 979Google Scholar
  170. Vandenbroucke, M., Largeau, C., 2007. Kerogen Origin, Evolution and Structure. Organic Geochemistry, 38(5): 719–833. doi:10.1016/j.orggeochem.2007.01.001CrossRefGoogle Scholar
  171. VanHazebroeck, E., Borrok, D. M., 2016. A New Method for the Inorganic Geochemical Evaluation of Unconventional Resources: An Example from the Eagle Ford Shale. Journal of Natural Gas Science and Engineering, 33: 1233–1243. doi:10.1016/j.jngse.2016.03.014CrossRefGoogle Scholar
  172. Varma, A. K., Hazra, B., Mendhe, V. A., et al., 2015. Assessment of Organic Richness and Hydrocarbon Generation Potential of Raniganj Basin Shales, West Bengal, India. Marine and Petroleum Geology, 59: 480–490. doi:10.1016/j.marpetgeo.2014.10.003CrossRefGoogle Scholar
  173. Varma, A. K., Hazra, B., Samad, S. K., et al., 2014a. Methane Sorption Dynamics and Hydrocarbon Generation of Shale Samples from West Bokaro and Raniganj Basins, India. Journal of Natural Gas Science and Engineering, 21: 1138–1147. doi:10.1016/j.jngse.2014.11.011CrossRefGoogle Scholar
  174. Varma, A. K., Hazra, B., Samad, S. K., et al., 2014b. Shale Gas Potential of Lower Permian Shales from Raniganj and West Bokaro Basins, India. 66th Annual Meeting and Symposium of the International Committee for Coal and Organic Petrology (ICCP-2014), Stuttgart. 40–41Google Scholar
  175. Vengosh, A., Warner, N., Osborn, S., et al., 2011. Elucidating Water Contamination by Fracturing Fluids and Formation Waters from Gas Wells: Integrating Isotopic and Geochemical Tracers. U.S. Environmental Protection Agency, Workshop on Fracturing Fluid Composition, Feb. 24–25, 2011, Washington DCGoogle Scholar
  176. Vinci Technologies, 2003. Rock-Eval 6 Operator Manual. Vinci Technologies, FranceGoogle Scholar
  177. Vine, J. D., Tourtelot, E. B., 1970. Geochemistry of Black Shale Deposits: A Summary Report. Economic Geology, 65(3): 253–272. doi:10.2113/gsecongeo.65.3.253CrossRefGoogle Scholar
  178. Wang, X. B., Zhang, B., He, Z. X., et al., 2016. Electrical Properties of Longmaxi Organic-Rich Shale and Its Potential Applications to Shale Gas Exploration and Exploitation. Journal of Natural Gas Science and Engineering, 36: 573–585. doi:10.13039/501100001809CrossRefGoogle Scholar
  179. Wanty, R. B., Goldhaber, M. B., 1992. Thermodynamics and Kinetics of Reactions Involving Vanadium in Natural Systems: Accumulation of Vanadium in Sedimentary Rocks. Geochimica et Cosmochimica Acta, 56(4): 1471–1483. doi:10.1016/0016-7037(92)90217-7CrossRefGoogle Scholar
  180. Wei, X. F., Guo, T. L., Liu, R. B., 2016. Geochemical Features and Genesis of Shale Gas in the Jiaoshiba Block of Fuling Shale Gas Field, Chongqing, China. Journal of Natural Gas Geoscience, 1(5): 361–371. doi:10.1016/j.jnggs.2016.11.005CrossRefGoogle Scholar
  181. Welte, D. H., 1965. Relation between Petroleum and Source Rock. AAPG Bulletin, 49: 2249–2267. doi:10.1306/a663388c-16c0-11d7-8645000102c1865dGoogle Scholar
  182. Whiticar, M. J., 1994. Correlation of Natural Gases with Their Sources. In: Magoon, J., Dow, W. G., eds., The Petroleum System––From Source to Trap. American Association of Petroleum Geologists, Memoir, 60: 261–283Google Scholar
  183. Whiticar, M. J., 1996. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gases. International Journal of Coal Geology, 32(1/2/3/4): 191–215. doi:10.1016/s0166-5162(96)00042-0CrossRefGoogle Scholar
  184. Wilkins, R. W. T., George, S. C., 2002. Coal as a Source Rock for Oil: A Review. International Journal of Coal Geology, 50(1/2/3/4): 317–361. doi:10.1016/s0166-5162(02)00134-9CrossRefGoogle Scholar
  185. Wood, D. A., 1988. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 72: 115–135. doi:10.1306/703c8263-1707-11d7-8645000102c1865dGoogle Scholar
  186. Wood, D. A., 2017. Re-establishing the Merits of Thermal Maturity and Petroleum Generation Multi-Dimensional Modelling with an Arrhenius Equation Using a Single Activation Energy. Journal of Earth Science, 28(5): 804–834. doi:10.1007/s12583-017-0735-7Google Scholar
  187. Wüst, R. A., Hackley, P. C., Nassichuk, B. R., et al., 2013. Vitrinite Reflectance versus Pyrolysis T max Data: Assessing Thermal Maturity in Shale Plays with Special Reference to the Duvernay Shale Play of the Western Canadian Sedimentary Basin, Alberta, Canada. Society of Petroleum Engineers Unconventional Resources Conference and Exhibition Paper, Asia Pacific, November 11–13, 2013, Brisbane, Australia, 167013: 11Google Scholar
  188. Xia, X. Y., Chen, J., Braun, R., et al., 2013. Isotopic Reversals with Respect to Maturity Trends due to Mixing of Primary and Secondary Products in Source Rocks. Chemical Geology, 339: 205–212. doi:10.1016/j.chemgeo.2012.07.025CrossRefGoogle Scholar
  189. Xia, X. Y., Tang, Y. C., 2012. Erratum to X. Xia and Y. Tang (2012) “Isotope Fractionation of Methane during Natural Gas Flow with Coupled Diffusion and Adsorption/Desorption” Geochimica et Cosmochimica Acta 77, 489–503. Geochimica et Cosmochimica Acta, 83: 398–399. doi:10.1016/j.gca.2012.01.005CrossRefGoogle Scholar
  190. Yang, R., He, S., Hu, Q. H., et al., 2017. Geochemical Characteristics and Origin of Natural Gas from Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China). International Journal of Coal Geology, 171: 1–11. doi:10.13039/501100004613CrossRefGoogle Scholar
  191. Zeng, H., Li, J., Liu, W., 2011. New Insights into Carbon Isotopic Reversals of Deep Gas in Songliao Basin, China. AAPG Hedberg Research Conference—Natural Gas Geochemistry: Recent Developments, Applications and Technologies, May 9–12, 2011, Beijing. 3Google Scholar
  192. Zhang, M. J., Tang, Q. Y., Cao, C. H., et al., 2017. Molecular and Carbon Isotopic Variation in 3.5 Years Shale Gas Production from Longmaxi Formation in Sichuan Basin, China. Marine and Petroleum Geology. doi:10.1016/j.marpetgeo.2017.01.023Google Scholar
  193. Zhou, Z., Ballentine, C. J., Kipfer, R., et al., 2005. Noble Gas Tracing of Groundwater/Coalbed Methane Interaction in the San Juan Basin, USA. Geochimica et Cosmochimica Acta, 69(23): 5413–5428. doi:10.1016/j.gca.2005.06.027CrossRefGoogle Scholar
  194. Zimmerman, A. R., Chorover, J., Goyne, K. W., et al., 2004. Protection of Mesopore-Adsorbed Organic Matter from Enzymatic Degradation. Environmental Science & Technology, 38(17): 4542–4548. doi:10.1021/es035340+CrossRefGoogle Scholar
  195. Zou, Y.-R., Cai, Y. L., Zhang, C. C., et al., 2007. Variations of Natural Gas Carbon Isotope-Type Curves and Their Interpretation––A Case Study. Organic Geochemistry, 38(8): 1398–1415. doi:10.1016/j.orggeochem.2007.03.002CrossRefGoogle Scholar
  196. Zumberge, J. E., Ferworn, K. A., Curtis, J. B., 2009. Gas Character Anomalies Found in Highly Productive Shale Gas Wells. Geochimica et Cosmochimica Acta, 73: A1539CrossRefGoogle Scholar
  197. Zumberge, J. E., Ferworn, K., Brown, S., 2012. Isotopic Reversal (‘Rollover’) in Shale Gases Produced from the Mississippian Barnett and Fayetteville Formations. Marine and Petroleum Geology, 31(1): 43–52. doi:10.1016/j.marpetgeo.2011.06.009CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.DWA Energy LimitedLincolnUK
  2. 2.Asoke Deysarkar and Ruma Acharya Centre of Excellence in Petroleum EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations