Journal of Earth Science

, Volume 27, Issue 1, pp 98–109

Hyporheic zone flow disruption from channel linings: Implications for the hydrology and geochemistry of an urban stream, St. Louis, Missouri, USA

  • Elizabeth A. Hasenmueller
  • Heather K. Robinson
Article

Abstract

Cement channel linings in an urban stream in St. Louis, Missouri increase event water contributions during flooding, shorten transport times, and magnify geochemical variability on both short and seasonal timescales due to disruption of hyporheic flowpaths. Detailed analyses of water isotopes, major and trace elements, and in situ water quality data for an individual flood event reveal that baseflow contributions rise by 8% only 320 m downstream of the point where this particular channel changes from cement-lined to unlined. However, additional hydrograph separations indicate baseflow contributions are variable and can be much higher (average baseflow increase is 16%). Stream electrical conductivity (EC) and solute concentrations in the lined reach were up to 25% lower during peak flow than in the unlined channel, indicating a greater event flow fraction. In contrast, during low flow, stream EC and solute concentrations in the lined reach were up to 30% higher due to the restricted inflow of more dilute groundwater. Over longer timescales, EC, solute concentrations, turbidity, and bacterial loads decrease downstream signifying increasing contributions of dilute baseflow. The decreased connectivity of surface waters and groundwaters along the hyporheic zone in lined channels increases the hydrologic and geochemical variability of urban streams.

Key Words

stream channel linings hyporheic zone groundwater-surface water interactions flood hydrograph urban geochemistry urban streams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12583_2016_632_MOESM1_ESM.pdf (226 kb)
Supplementary material, approximately 227 KB.

References

  1. Boulton, A. J., Findlay, S., Marmonier, P., et al., 1998. The Functional Significance of the Hyporheic Zone in Streams and Rivers. Annual Review of Ecology and Systematics, 29(1): 59–81. doi:10.1146/annurev.ecolsys.29.1.59CrossRefGoogle Scholar
  2. Buffington, J. M., Tonina, D., 2009. Hyporheic Exchange in Mountain Rivers II: Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange. Geography Compass, 3(3): 1038–1062. doi:10.1111/j.1749-8198.2009.00225.xCrossRefGoogle Scholar
  3. Bukaveckas, P. A., 2007. Effects of Channel Restoration on Water Velocity, Transient Storage, and Nutrient Uptake in a Channelized Stream. Environmental Science & Technology, 41(5): 1570–1576. doi:10.1021/es061618xCrossRefGoogle Scholar
  4. Criss, R. E., 1997. New Formulation for the Hydrograph, Time Constants for Stream Flow, and the Variable Character of Base Flow. Transactions American Geophysical Union, 78: 317Google Scholar
  5. Criss, R. E., 1999. Principles of Stable Isotope Distribution. Oxford University Press, Oxford. 254Google Scholar
  6. Criss, R. E., 2003. Hydrograph for Small Basins Following Intense Storms. Geophysical Research Letters, 30(6): 1314–1318. doi:10.1029/2002gl016808CrossRefGoogle Scholar
  7. Criss, R. E., Winston, W. E., 2008a. Discharge Predictions of a Rainfall-Driven Theoretical Hydrograph Compared to Common Models and Observed Data. Water Resources Research, 44(10): W10407. doi:10.1029/2007wr006415CrossRefGoogle Scholar
  8. Criss, R. E., Winston, W. E., 2008b. Properties of a Diffusive Hydrograph and the Interpretation of Its Single Parameter. Mathematical Geosciences, 40(3): 313–325. doi:10.1007/s11004-008-9145-9CrossRefGoogle Scholar
  9. Fetter, C. W., 2001. Applied Hydrogeology, 4th Ed. Prentice Hall, Upper Saddle River. 598Google Scholar
  10. Frederickson, G. C., Criss, R. E., 1999. Isotope Hydrology and Residence Times of the Unimpounded Meramec River Basin, Missouri. Chemical Geology, 157(3/4): 303–317. doi:10.1016/s0009-2541(99)00008-xCrossRefGoogle Scholar
  11. Freeze, R. A., Cherry, J. A., 1979. Groundwater. Prentice-Hall, Englewood Cliffs, NJ. 604Google Scholar
  12. Gooseff, M. N., LaNier, J., Haggerty, R., et al., 2005. Determining In-Channel (Dead Zone) Transient Storage by Comparing Solute Transport in a Bedrock Channel-Alluvial Channel Sequence, Oregon. Water Resources Research, 41(6): W06014. doi:10.1029/2004wr003513CrossRefGoogle Scholar
  13. Hach, 2005a. Method 8206, Chloride, Mercuric Nitrate, in Digital Titrator Model 16900 Manual. Hach Company, Loveland, CO, USAGoogle Scholar
  14. Hach, 2005b. Method 8038, Nitrogen, Ammonia: Nessler Method. Hach Company, Loveland, CO, USAGoogle Scholar
  15. Hach, 2005c. Method 10020, Nitrate: Chromotrophic Acid Method. Hach Company, Loveland, CO, USAGoogle Scholar
  16. Hach, 2005d. Method 8048, Phosphorus: Reactive (Orthophosphate) Method. Hach Company, Loveland, CO, USAGoogle Scholar
  17. Hach, 2005e. Method 8190, Phosphorus: Total Digestion. Hach Company, Loveland, CO, USAGoogle Scholar
  18. Hancock, P. J., 2002. Human Impacts on the Stream-Groundwater Exchange Zone. Environmental Management, 29(6): 763–781. doi:10.1007/s00267-001-0064-5CrossRefGoogle Scholar
  19. Haria, A. H., Shand, P., Soulsby, C., et al., 2012. Spatial Delineation of Groundwater-Surface Water Interactions through Intensive In-Stream Profiling. Hydrological Processes, 27(4): 628–634. doi:10.1002/hyp.9551CrossRefGoogle Scholar
  20. Harrison, R. W., 1997. Bedrock Geologic Map of the St. Louis 30'×60' Quadrangle, Missouri and Illinois. U.S. Geological Survey Miscellaneous Investigation Series Map I-2533, Scale 1: 100 000Google Scholar
  21. Hasenmueller, E. A., 2011. The Hydrology and Geochemistry of Urban and Rural Watersheds in East-Central Missouri: [Dissertation]. Washington University, St. Louis. 382Google Scholar
  22. Hasenmueller, E. A., Criss, R. E., 2013a. Multiple Sources of Boron in Urban Surface Waters and Groundwaters. Science of the Total Environment, 447: 235–247. doi:10.1016/j.scitotenv.2013.01.001CrossRefGoogle Scholar
  23. Hasenmueller, E. A., Criss, R. E., 2013b. Geochemical Techniques to Discover Open Cave Passage in Karst Spring Systems. Applied Geochemistry, 29: 126–134. doi:10.1016/j.apgeochem.2012.11.004CrossRefGoogle Scholar
  24. Hinkle, S. R., Duff, J. H., Triska, F. J., et al., 2001. Linking Hyporheic Flow and Nitrogen Cycling near the Willamette River—A Large River in Oregon, USA. Journal of Hydrology, 244(3/4): 157–180. doi:10.1016/s0022-1694(01)00335-3CrossRefGoogle Scholar
  25. Lau, J. K., Lauer, T. E., Weinman, M. L., 2006. Impacts of Channelization on Stream Habitats and Associated Fish Assemblages in East Central Indiana. The American Midland Naturalist, 156(2): 319–330. doi:10.1674/0003-0031(2006)156[319:iocosh]2.0.co;2CrossRefGoogle Scholar
  26. Lee, J. H., Bang, K. W., Ketchum, L. H., et al., 2002. First Flush Analysis of Urban Storm Runoff. Science of the Total Environment, 293(1–3): 163–175. doi:10.1016/s0048-9697(02)00006-2CrossRefGoogle Scholar
  27. Lutzen, E. E., Rockaway, J. D. Jr., 1989. Engineering Geologic Map of St. Louis County, Missouri. Missouri Department of Natural Resources, Open File Map 89-256-EGGoogle Scholar
  28. Metropolitan St. Louis Sewer District (MSD), 2015}. Metropolitan St. Louis Sewer District: Sewer Overflows [2015-12-11]. http://www.stlmsd.com/sites/default/files/education/448847.PDGoogle Scholar
  29. National Oceanic and Atmospheric Administration (NOAA), 2015. National Weather Service (NWS) Weather: NWS [2015-12-11]. http://www.weather.govGoogle Scholar
  30. Rivett, M. O., Ellis, P. A., MacKay, R., 2011. Urban Groundwater Baseflow Influence upon Inorganic River-Water Quality: The River Tame Headwaters Catchment in the City of Birmingham, UK. Journal of Hydrology, 400(1/2): 206–222. doi:10.1016/j.jhydrol.2011.01.036CrossRefGoogle Scholar
  31. Ryan, R. J., Welty, C., Larson, P. C., 2010. Variation in Surface Water-Groundwater Exchange with Land Use in an Urban Stream. Journal of Hydrology, 392(1/2): 1–11. doi:10.1016/j.jhydrol.2010.06.004CrossRefGoogle Scholar
  32. Shock, E. L., Carbery, E., Noblit, N., et al., 2003. Water and Solute Sources in an Urban Stream, River des Peres, St. Louis, Missouri. In: Criss, R. E., Wilson, D. E., eds., At the Confluence: Rivers, Floods, and Water Quality in the St. Louis Region. Missouri Botanical Garden Press, St. Louis, Missouri. 150–160Google Scholar
  33. Sklash, M. G., Farvolden, R. N., 1979. The Role of Groundwater in Storm Runoff. Journal of Hydrology, 43(1–4): 45–65. doi:10.1016/0022-1694(79)90164-1CrossRefGoogle Scholar
  34. Stueber, A. M., Criss, R. E., 2005. Origin and Transport of Dissolved Chemicals in a Karst Watershed, Southwestern Illinois. Journal of the American Water Resources Association, 41(2): 267–290. doi:10.1111/j.1752-1688.2005.tb03734.xCrossRefGoogle Scholar
  35. U.S. Census, 2010. Population Density Date: 2010 U.S. Census [2014-12-15]. http://2010.census.gov/2010censusGoogle Scholar
  36. U.S. Environmental Protection Agency (EPA), 1990. Method 200.7: Determinations of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. U.S. Environmental Protection Agency, Revision 3.0Google Scholar
  37. U.S. Environmental Protection Agency (EPA), 1994. Method 200.8: Determinations of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry. U.S. Environmental Protection Agency, Revision 5.4Google Scholar
  38. U.S. Geological Survey (USGS), 2015a. USGS Land Cover Institute (LCI): U.S. Land Cover [2014-12-15]. http://landcover.usgs.gov/uslandcover.phpGoogle Scholar
  39. U.S. Geological Survey (USGS), 2015b. USGS Real-Time Data for Missouri: USGS Real-Time Data for Missouri [2014-12-15]. http://waterdata.usgs.gov/mo/nwis/rtGoogle Scholar
  40. Vaughn, D. M., 1990. Flood Dynamics of a Concrete-Lined, Urban Stream in Kansas City, Missouri. Earth Surface Processes and Landforms, 15(6): 525–537. doi:10.1002/esp.3290150605CrossRefGoogle Scholar
  41. Waddington, J. M., Roulet, N. T., Hill, A. R., 1993. Runoff Mechanisms in a Forested Groundwater Discharge Wetland. Journal of Hydrology, 147(1–4): 37–60. doi:10.1016/0022-1694(93)90074-jCrossRefGoogle Scholar
  42. White, D. S., 1993. Perspectives on Defining and Delineating Hyporheic Zones. Journal of the North American Benthological Society, 12(1): 61–69. doi:10.2307/1467686CrossRefGoogle Scholar
  43. Winston, W. E., Criss, R. E., 2004. Dynamic Hydrologic and Geochemical Response in a Perennial Karst Spring. Water Resources Research, 40(5): W05106. doi:10.1029/2004wr003054CrossRefGoogle Scholar
  44. Wondzell, S. M., Swanson, F. J., 1999. Floods, Channel Change, and the Hyporheic Zone. Water Resources Research, 35(2): 555–567. doi:10.1029/1998wr900047CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elizabeth A. Hasenmueller
    • 1
  • Heather K. Robinson
    • 1
  1. 1.Department of Earth and Atmospheric SciencesSaint Louis UniversitySt. LouisUSA

Personalised recommendations