Advertisement

Journal of Earth Science

, Volume 26, Issue 6, pp 883–892 | Cite as

Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir

  • Haiyang Wang
  • Chao LiEmail author
  • Chaoyong Hu
  • Shucheng Xie
Article

Abstract

The Ediacaran Doushantuo Formation (ca. 635–551 Ma) deposited immediately after the last Neoproterozoic glaciations and recorded the most prominent negative excursions of carbonate carbon isotopic composition (δ13Ccarb). These excursions have been interpreted as a result of widespread remineralization of a large dissolved organic carbon (DOC) reservoir in the Ediacaran deep oceans. However, there is no direct evidence so far found in rocks for the proposed DOC reservoir, which devalues such an interpretation. Here, we conducted a detailed study on the glow-curves characteristics and signal origins of spurious thermoluminescence (TL) of the Doushantuo Formation at Jiulongwan in Yangtze Gorges area, South China, through sequential tests under CO2, N2 and air. Spurious TL intensities for test samples before and after removing soluble organic matter via accelerated solvent extraction (ASE) are nearly identical. Further, significant positive correlation between the spurious TL intensity and total inorganic carbon (TIC) content (R 2=0.7) indicate that the Doushantuo spurious TL with the characteristic peak at 393.5 °C from the sequential test is chemiluminescence (CL) which is derived from the oxidation of a type of non-volatile organic matter strongly associated with carbonate mineral lattice (termed as “X-OM”). A most likely explanation is that the X-OM is a type of dissolved organic matter which co-precipitated with carbonate minerals into sediments in the Ediacaran Doushantuo Ocean. Furthermore, a significant exponential negative correlation (R 2=0.55) is observed between the CL data and the isotopic difference between carbonate and coexisting bulk organic matter (i.e., Δ13Ccarb-org, a proxy for remineralization degree of DOC reservoir in proposed DOC hypothesis), suggesting that the X-OM was derived from the oxidation of the DOC reservoir in the Ediacaran Ocean. We thus propose that the X-OM and its CL detected in our study may have recorded the evolution of the possible DOC reservoir in the Ediacaran Doushantuo Ocean. If this is correct, the stratigraphic variations of the CL intensity in the Doushantuo Formation at Jiulongwan support the pulsed oxidation of the DOC reservoir in the Ediacaran Ocean. Our findings indicate that the CL derived from the oxidation of non-volatile organic matter which is strongly associated with carbonate mineral lattices in rocks may provide a feasible approach for probing the evolution of DOC reservoir in the ancient oceans, thus likely provide direct geological evidence for the development of oceanic DOC reservoir in geological times.

Key Words

Doushantuo Formation spurious thermoluminescence chemiluminescence carbonates dissolved organic carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Aitken, M. J., Fleming, S. J., Reid, J., et al., 1968. Elimination of Spurious Thermoluminescence. In: McDougall, D. J., ed., Thermoluminescence of Geological Materials. Academic Press, New York. 133–142Google Scholar
  2. Baietto, V., Villeneuve, G., Guibert, P., et al., 2000. EPR and TL Correlation in Some Powdered Greek White Marbles. Applied Radiation and Isotopes, 52(2): 229–235CrossRefGoogle Scholar
  3. Baker, A., Barnes, W. L., Smart, P. L., 1996. Speleothern Luminescence Intensity and Spectral Characteristics: Signal Calibration and a Record of Palaeovegetation Change. Chemical Geology, 130(1): 65–76CrossRefGoogle Scholar
  4. Baker, A., Genty, D., Smart, P. L., 1998. High-Resolution Records of Soil Humification and Paleoclimate Change from Variations in Speleothem Luminescence Excitation and Emission Wavelengths. Geology, 26(10): 903CrossRefGoogle Scholar
  5. Bos, A. J. J., 2006. Theory of Thermoluminescence. Radiation Measurements, 41: S45–S56CrossRefGoogle Scholar
  6. Bristow, T. F., Kennedy, M. J., 2008. Carbon Isotope Excursions and the Oxidant Budget of the Ediacaran Atmosphere and Ocean. Geology, 36(11): 863CrossRefGoogle Scholar
  7. Bruce, J., Galloway, R. B., Harper, K., et al., 1999. Bleaching and Phototransfer of Thermoluminescence in Limestone. Radiation Measurements, 30(4): 497–504CrossRefGoogle Scholar
  8. Chen, G. F., Hu, C. Y., Li, N., et al., 2013. Thermoluminescence in Response to the Mass Extinction Event in Penglaitan Section in Laibin, Guangxi. Science China Earth Sciences, 56(8): 1350–1356CrossRefGoogle Scholar
  9. Christodoulides, C., Fremlin, J. H., 1971. Thermoluminescence of Biological Materials. Nature, 232: 257–258CrossRefGoogle Scholar
  10. Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98CrossRefGoogle Scholar
  11. Debenham, N. C., 1983. Reliability of Thermoluminescence Dating of Stalagmitic Calcite. Nature, 304: 154–156CrossRefGoogle Scholar
  12. Dupraz, C., Reid, R. P., Braissant, O., et al., 2009. Processes of Carbonate Precipitation in Modern Microbial Mats. Earth-Science Reviews, 96(3): 141–162CrossRefGoogle Scholar
  13. Engin, B., Güven, O., 1997. Thermoluminescence Dating of Denizli Travertines from the Southwestern Part of Turkey. Applied Radiation and Isotopes, 48(9): 1257–1264CrossRefGoogle Scholar
  14. Fattahi, M., Stokes, S., 2003. Dating Volcanic and Related Sediments by Luminescence Methods: A Review. Earth-Science Reviews, 62(3–4): 229–264CrossRefGoogle Scholar
  15. Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744–747CrossRefGoogle Scholar
  16. Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth’s history. Nature Geoscience, 4(5): 285–292CrossRefGoogle Scholar
  17. Gruber, D. F., Simjouw, J. P., Seitzinger, S. P., et al., 2006. Dynamics and Characterization of Refractory Dissolved Organic Matter Produced by a Pure Bacterial Culture in an Experimental Predator-Prey System. Applied and Environmental Microbiology, 72(6): 4184–4191CrossRefGoogle Scholar
  18. Jiang, G. Q., Kaufman, A. J., Christie-Blick, N., et al., 2007. Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ13C Gradient. Earth and Planetary Science Letters, 261(1–2): 303–320CrossRefGoogle Scholar
  19. Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19(4): 831–849CrossRefGoogle Scholar
  20. Jiao, N. Z., Herndl, G. J., Hansell, D. A., et al., 2010. Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean. Nature Reviews Microbiology, 8(8): 593–599CrossRefGoogle Scholar
  21. Johnston, D. T., Macdonald, F. A., Gill, B. C., et al., 2012. Uncovering the Neoproterozoic Carbon Cycle. Nature, 483(7389): 320–323CrossRefGoogle Scholar
  22. Kulak, A. N., Iddon, P., Li, Y., et al., 2007. Continuous Structural Evolution of Calcium Carbonate Particles: A Unifying Model of Copolymer-Mediated Crystallization. Journal of the American Chemical Society, 129(12): 3729–3736CrossRefGoogle Scholar
  23. Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83CrossRefGoogle Scholar
  24. Li, H., Xin, H. L., Muller, D. A., et al., 2009. Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels. Science, 326(5957): 1244–1247CrossRefGoogle Scholar
  25. Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1–2): 179–210CrossRefGoogle Scholar
  26. Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1): 85–109CrossRefGoogle Scholar
  27. Lian, O. B., Roberts, R. G., 2006. Dating the Quaternary: Progress in Luminescence Dating of Sediments. Quaternary Science Reviews, 25(19–20): 2449–2468CrossRefGoogle Scholar
  28. Liao, J., Hu, C. Y., Li, C. Z., et al., 2014. Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy. Earth Science—Journal of China University of Geosciences, 39(4): 443–450 (in Chinese with English Abstract)Google Scholar
  29. Lu, M., Zhu, M. Y., Zhang, J. M., et al., 2013. The DOUNCE Event at the Top of the Ediacaran Doushantuo Formation, South China: Broad Stratigraphic Occurrence and Non-Diagenetic Origin. Precambrian Research, 225: 86–109CrossRefGoogle Scholar
  30. McFadden, K. A., Huang, J., Chu, X. L., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 105(9): 3197–3202CrossRefGoogle Scholar
  31. Ninagawa, K., Takahashi, N., Wada, T., et al., 1988. Thermoluminescence Measurements of a Calcite Shell for Dating. Quaternary Science Reviews, 7(3): 367–371CrossRefGoogle Scholar
  32. Roque, C., Guibert, P., Vartanian, E., et al., 2001. Thermoluminescence—Dating of Calcite: Study of Heated Limestone Fragments from Upper Paleolithic Layers at Combe Sauniere, Dordogne, France. Quaternary Science Reviews, 20(5): 935–938CrossRefGoogle Scholar
  33. Rothman, D. H., Hayes, J. M., Summons, R. E., 2003. Dynamics of the Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 100(14): 8124–8129CrossRefGoogle Scholar
  34. Shopov, Y., Stoykova, D., Tsankov, L., et al., 2000. Verification of the Causes of Glaciations and Sea Level Changes Using the Records of Calcite Speleothems. International Journal of Speleology, 29(1): 3Google Scholar
  35. Swanson-Hysell, N. L., Rose, C. V., Calmet, C. C., et al., 2010. Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling. Science, 328(5978): 608–611CrossRefGoogle Scholar
  36. Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1): 141–158CrossRefGoogle Scholar
  37. Wintle, A. G., 1975. Effects of Sample Preparation on the Thermoluminescence Characteristics of Calcite. Modern Geology, 5: 165–167Google Scholar
  38. Yuan, X. L., Xiao, S. H., Yin, L. M., et al., 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation. China University of Science and Technology Press, Hefei. 1–71 (in Chinese)Google Scholar
  39. Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225: 7–28CrossRefGoogle Scholar
  40. Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2): 7–61CrossRefGoogle Scholar
  41. Zhu, M. Y., Zhang, J. M., Yang, A. H., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951–960CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Haiyang Wang
    • 1
    • 2
  • Chao Li
    • 1
    Email author
  • Chaoyong Hu
    • 1
  • Shucheng Xie
    • 1
  1. 1.State Key laboratory of Biogeology and Environment GeologyChina University of GeosciencesWuhanChina
  2. 2.School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations