Skip to main content
Log in

Velocity modeling and inversion techniques for locating microseismic events in unconventional reservoirs

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

A velocity model is an important factor influencing microseismic event locations. We review the velocity modeling and inversion techniques for locating microseismic events in exploration for unconventional oil and gas reservoirs. We first describe the geological and geophysical characteristics of reservoir formations related to hydraulic fracturing in heterogeneity, anisotropy, and variability, then discuss the influences of velocity estimation, anisotropy model, and their time-lapse changes on the accuracy in determining microseismic event locations, and then survey some typical methods for building velocity models in locating event locations. We conclude that the three tangled physical attributes of reservoirs make microseismic monitoring very challenging. The uncertainties in velocity model and ignoring its anisotropies and its variations in hydraulic fracturing can cause systematic mislocations of microseismic events which are unacceptable in microseismic monitoring. So, we propose some potential ways for building accurate velocity models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Al-Harrasi, O. H., Al-Anboori, A., Wüstefeld, A., et al., 2011. Seismic Anisotropy in a Hydrocarbon Field Estimated from Microseismic Data. Geophysical Prospecting. 59(2): 227–243. doi:10.1111/j.1365-2478.2010.00915.x

    Article  Google Scholar 

  • Bardainne, T., Gaucher, E., 2010. Constrained Tomography of Realistic Velocity Models in Microseismic Monitoring Using Calibration Shots. Geophysical Prospecting. 58(5): 739–753. doi:10.1111/j.1365-2478.2010.00912.x

    Article  Google Scholar 

  • Coates, R. T., Schoenberg, M., 1995. Finite-Difference Modeling of Faults and Fractures. Geophysics. 60(5): 1514–1526. doi:10.1190/1.1443884

    Article  Google Scholar 

  • Duncan, P. M., 2005. Is There a Future for Passive Seismic? First Break, 23: 111–115

    Google Scholar 

  • Erwemi, A., Walsh, J., Bennett, L., et al., 2010. Anisotropic Velocity Modeling for Microseismic Processing: Part 3—Borehole Sonic Calibration Case Study. SEG Technical Program Expanded Abstracts. 2010, 29: 508–512. doi:10.1190/1.3513829

    Article  Google Scholar 

  • Fehler, M., House, L., Phillips, W. S., et al., 1998. A Method to Allow Temporal Variation of Velocity in Travel-Time Tomography Using Microearthquakes Induced during Hydraulic Fracturing. Tectonophysics. 289(1–3): 189–201. doi:10.1016/s0040-1951(97)00315-6

    Article  Google Scholar 

  • Fish, A. M., 2012. Microseismic Velocity Inversion and Event Location Using Reverse Time Imaging: [Dissertation]. Colorado School of Mines, Golden, Colorado. 53–69

    Google Scholar 

  • Grechka, V., Singh, P., Das, I., 2011. Estimation of Effective Anisotropy Simultaneously with Locations of Microseismic Events. Geophysics. 76(6): WC143–WC155. doi:10.1190/geo2010-0409.1

    Article  Google Scholar 

  • Grechka, V., Yaskevich, S., 2013. Inversion of Microseismic Data for Triclinic Velocity Models. Geophysical Prospecting. 61(6): 1159–1170. doi:10.1111/1365-2478.12042

    Article  Google Scholar 

  • Grechka, V., Yaskevich, S., 2014. Azimuthal Anisotropy in Microseismic Monitoring: A Bakken Case Study. Geophysics. 79(1): KS1–KS12. doi:10.1190/geo2013-0211.1

    Article  Google Scholar 

  • Jones, G. A., Kendall, J. M., Bastow, I. D., et al., 2014. Locating Microseismic Events Using Borehole Data. Geophysical Prospecting. 62(1): 34–49. doi:10.1111/1365-2478.12076

    Article  Google Scholar 

  • Kiselevitch, V. L., Nikolaev, A. V., Troitskiy, P. A., et al., 1991. Emission Tomography: Main Ideas, Results, and Prospects. SEG Technical Program Expanded Abstracts. 1991, 10: 1602. doi:10.1190/1.1888855

    Google Scholar 

  • Kochnev, I. V., Polyakov, V. S., Murtayev, I., et al., 2007. Imaging Hydraulic Fracture Zones from Surface Passive Microseismic Data. First Break, 25: 77–80

    Google Scholar 

  • Kushnir, A., Rozhkov, N., Varypaev, A., 2013. Statistically-Based Approach for Monitoring of Micro-Seismic Events. GEM—International Journal on Geomathematics. 4(2): 201–225. doi:10.1007/s13137-013-0049-6

    Article  Google Scholar 

  • Kushnir, A., Varypaev, A., Dricker, I., et al., 2014. Passive Surface Microseismic Monitoring as a Statistical Problem: Location of Weak Microseismic Signals in the Presence of Strongly Correlated Noise. Geophysical Prospecting. 62(4): 819–833. doi:10.1111/1365-2478.12124

    Article  Google Scholar 

  • Liu, H., Zhang, J., 2014. STA/LTA Algorithm Analysis and Improvement of Microseismic Signal Automatic Detection. Progress in Geophysics, 29: 1708–1714 (in Chinese with English Abstract)

    Google Scholar 

  • Maxwell, S. C., Rutledge, J., Jones, R., et al., 2010a. Petroleum Reservoir Characterization Using Downhole Microseismic Monitoring. Geophysics. 75(5): 75A129–75A137. doi:10.1190/1.3477966

    Article  Google Scholar 

  • Maxwell, S. C., Bennett, L., Jones, M., et al., 2010b. Anisotropic Velocity Modeling for Microseismic Processing: Part 1—Impact of Velocity Model Uncertainty. SEG Technical Program Expanded Abstracts. 2010, 29: 2130–2134. doi:10.1190/1.3513267

    Article  Google Scholar 

  • Maxwell, S. C., Urbancic, T. I., Steinsberger, N., et al., 2002. Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett Shale. SPE Annual Technical Conference and Exhibition, Paper SPE 77440. doi:10.2118/77440-ms

    Google Scholar 

  • Pei, D. H., Carmichael, J., Waltman, C., et al., 2014. Microseismic Anisotropic Velocity Calibration by Using both Direct and Reflected Arrivals. SEG Technical Program Expanded Abstracts. 2014, 33: 2278–2282. doi:10.1190/segam2014-0097.1

    Google Scholar 

  • Sena, A., Castillo, G., Chesser, K., et al., 2011. Seismic Reservoir Characterization in Resource Shale Plays: Stress Analysis and Sweet Spot Discrimination. The Leading Edge. 30(7): 758–764. doi:10.1190/1.3609090

    Article  Google Scholar 

  • Teanby, N., Kendall, J. M., Jones, R. H., et al., 2004. Stress-Induced Temporal Variations in Seismic Anisotropy Observed in Microseismic Data. Geophysical Journal International. 156(3): 459–466. doi:10.1111/j.1365-246x.2004.02212.x

    Article  Google Scholar 

  • Usher, P. J., Angus, D. A., Verdon, J. P., 2013. Influence of a Velocity Model and Source Frequency on Microseismic Waveforms: Some Implications for Microseismic Locations. Geophysical Prospecting. 61(Suppl. 1): 334–345. doi:10.1111/j.1365-2478.2012.01120.x

    Article  Google Scholar 

  • van Dok, R. V., Fuller, B., Engelbrecht, L., et al., 2011. Seismic Anisotropy in Microseismic Event Location Analysis. The Leading Edge. 30(7): 766–770. doi:10.1190/1.3609091

    Article  Google Scholar 

  • Verdon, J. P., Kendall, J. M., 2011. Detection of Multiple Fracture Sets Using Observations of Shear-Wave Splitting in Microseismic Data. Geophysical Prospecting. 59(4): 593–608. doi:10.1111/j.1365-2478.2010.00943.x

    Article  Google Scholar 

  • Walsh, J., Sinha, B., Plona, T., et al., 2007. Derivation of Anisotropy Parameters in a Shale Using Borehole Sonic Data. SEG Technical Program Expanded Abstracts. 2007, 26: 323–327. doi:10.1190/1.2792435

    Google Scholar 

  • Warpinski, N. R., Waltman, C. K., Du, J., et al., 2009. Anisotropy Effects in Microseismic Monitoring. SPE Annual Technical Conference and Exhibition, Paper SPE 124208. doi:10.2118/124208-ms

    Google Scholar 

  • Woerpel, J. C., 2010. Anisotropic Velocity Modeling for Microseismic Processing: Part 2—Fast and Accurate Model Calibration with a Cross-Well Source. SEG Technical Program Expanded Abstracts. 2010, 29: 2135–2139. doi:10.1190/1.3513268

    Article  Google Scholar 

  • Yin, C., Liu, H., Li, Y., et al., 2013a. The Precision Analysis of the Microseismic Location. Progress in Geophysics, 28: 800–807 (in Chinese with English Abstract)

    Google Scholar 

  • Yin, C., Liu, H., Wu, F. R., et al., 2013b. The Effect of the Calibrated Velocity on the Microseismic Event Location Precision. SEG Technical Program Expanded Abstracts. 2013, 32: 1977–1981. doi:10.1190/segam2013-0335.1

    Google Scholar 

  • Zhang, H. J., Sarkar, S., Toksöz, M. N., et al., 2009. Passive Seismic Tomography Using Induced Seismicity at a Petroleum Field in Oman. Geophysics. 74(6): WCB57–WCB69. doi:10.1190/1.3253059

    Article  Google Scholar 

  • Zhang, H., Thurber, C. H., 2003. Double-Difference Tomography: The Method and Its Application to the Hayward Fault, California. Bulletin of the Seismological Society of America. 93(5): 1875–1889. doi:10.1785/0120020190

    Article  Google Scholar 

  • Zhang, X. L., Zhang, F., Li, X. Y., 2014. The Influence of Fracturing Process on Microseismic Propagation. Geophysical Prospecting. 62(4): 797–805. doi:10.1111/1365-2478.12145

    Article  Google Scholar 

  • Zhang, Y., Eisner, L., Barker, W., et al., 2013. Effective Anisotropic Velocity Model from Surface Monitoring of Microseismic Events. Geophysical Prospecting. 61(5): 919–930. doi:10.1111/1365-2478.12017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, H., Zou, Z. et al. Velocity modeling and inversion techniques for locating microseismic events in unconventional reservoirs. J. Earth Sci. 26, 495–501 (2015). https://doi.org/10.1007/s12583-015-0565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-015-0565-4

Keywords

Navigation