Submicron volume roughness & asperity contact friction model for principle slip surface in flash heating process

Abstract

Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5 μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18–300 MPa) and slip rate (0.25–7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.

This is a preview of subscription content, access via your institution.

References Cited

  1. Babacan, A. E., Gelisli, K., Ersoy, H., 2014. Seismic Tomography and Surface Wave Analysis Based Methodologies on Evaluation of Geotechnical Properties of Volcanic Rocks: A Case Study. Journal of Earth Science, 25(2): 348–356. doi:10.1007/s12583-014-0417-7

    Article  Google Scholar 

  2. Beeler, N. M., Tullis, T. E., Goldsby, D. L., 2008. Constitutive Relationships and Physical Basis of Fault Strengh due to Flash Heating. Journal of Geophysical Research, 113: B01401. doi:10.1029/2007JB004988

    Article  Google Scholar 

  3. Boucly, V., Nelias, D., Green, I., 2007. Modeling of the Rolling and Sliding Contact between Two Asperities. Journal of Tribology-Transactions of the Asme, 129(2): 235–245. doi:10.1115/1.2464137

    Article  Google Scholar 

  4. Byerlee, J. D., Brace, W. F., 1969. High-Pressure Mechanical Instability in Rocks. Science, 164(3880): 713–5. doi:10.1126/science.164.3880.713

    Article  Google Scholar 

  5. Byerlee, J., 1978. Friction of Rocks. Pure and Applied Geophysics, 116(4/5): 615–626. doi:10.1007/BF00876528

    Article  Google Scholar 

  6. Cheng, H. H., Qiao, Y. C., Liu, C., et al., 2012. Extended Hybrid Pressure and Velocity Boundary Conditions for D3Q27 Lattice Boltzmann Model. Applied Mathematical Modelling, 36(5): 2031–2055. doi:10.1016/j.apm.2011.08.015

    Article  Google Scholar 

  7. Deak, J. C., Pang, Y. S., Sechler, T. D., et al., 2004. Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer. Science, 306(5695): 473–476. doi:10.1126/science.1102074

    Article  Google Scholar 

  8. Dey, S., Paul, S., Sarkar, P., 2014. Morphological and Microstructural Evidences of Paleo-Seisminc Occurrences in an Earthquake Prone Zone of Tripura, India. Journal of Earth Science, 25(2): 289–298. doi:10.1007/s12583-014-0430-x

    Article  Google Scholar 

  9. DiToro, G., Han, R., Hirose, T., et al., 2011. Fault Lubrication during Earthquakes. Nature, 471(7339): 494–498. doi: 10.1038/nature09838

    Article  Google Scholar 

  10. Dieteric, J. H., 1972. Time-Dependent Friction in Rocks. Journal of Geophysical Research, 77(20): 3690–3697. doi:10.1029/JB077i020p03690

    Article  Google Scholar 

  11. Dlott, D. D., 1994. Ultrafast Temperature-Jump Spectroscopy in Solids. Abstracts of Papers of the American Chemical Society, 208: 17–PHYS. doi:10.1063/1.44920

    Google Scholar 

  12. Giannuzzi, L. A., Stevie, F. A., 2004. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer. ISBN: 978-0-387-23116-7

    Google Scholar 

  13. Goldsby, D. L., Tullis, T. E., 2002. Low Frictional Strength of Quartz Rocks at Subseismic Slip Rates. Geophysical Research Letters, 29: 17. doi:10.1029/2002GL015240

    Article  Google Scholar 

  14. Goldsby, D. L., Tullis, T. E., 2011. Flash Heating Leads to Low Frictional Strength of Crustal Rocks at Earthquake Slip Rates. Science, 334(6053): 216–218. doi:10.1126/science.1207902

    Article  Google Scholar 

  15. Hayat, M. A., 1973–1975. Electron Microscopy of Enzymes: Principles and Methods. Van Nostrand Reinhld, New York

    Google Scholar 

  16. Jacq, C., Nelias, D., Lormand, G., et al., 2002. Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code. Journal of Tribology-Transactions of the Asme, 124(4): 653–667. doi:10.1115/1.1467920

    Article  Google Scholar 

  17. Kohli, A. H., Goldsby, D. L., Hirth, G., et al., 2011. Flash Weakening of Serpentinite at Near-Seismic Slip Rates. Journal of Geophysical Research-Solid Earth, 116(B3). doi:10.1029/2010JB007833

    Google Scholar 

  18. Libby, W. F., 1960. Optical Transparency and Resistance to Flash Heating. Journal of Chemical Physics, 33(5): 1588–1589. doi:10.1063/1.1731457

    Article  Google Scholar 

  19. Lin, A., 2008. Fossil Earthquakes: The Formation and Preservation of Pseudotachylytes. Springer, Berlin. 348

    Google Scholar 

  20. Lloyd, E. G., 1987. Atomic Number and Crystallographic Contrast Images with the SEM: A Review of Back Scattered Electron Techniques. Mineralogical Magazine, 51: 3–19. doi:10.1180/minmag.1987.051.359.02

    Article  Google Scholar 

  21. Lockner, D. A., Byerlee, J. D., 1978. Micro-Fracturing and Velocity Changes during Creep in Granite. EOS, Transactions American Geophysical Union, 59(12): 1207

    Google Scholar 

  22. Mackenzie, R., 1990. Focused Ion Beam Technology: A Bibliography. Nanotechnology, 1(2): 163. doi:10.1088/0957-4484/1/2/007

    Article  Google Scholar 

  23. Moore, D. E., Morrow, C. A., Byerlee, J. D., 1986. High-Temperature Permeability and Groundwater Chemistry of Some Nevada Test Site Tuffs. Journal of Geophysical Research-Solid Earth and Planets, 91(B2): 2163–2171. doi:10.1029/JB091iB02p02163

    Article  Google Scholar 

  24. Moore, D. E., Morrow, C. A., Byerlee, J. D., 1983. Chemical-Reactions Accompanying Fluid-Flow through Granite Held in a Temperature-Gradient. Geochimica et Cosmochimica Acta, 47(3): 445–453. doi:10.1016/0016-7037(83)90267-3

    Article  Google Scholar 

  25. Morrow, C., Lockner, D., Moore, D., et al., 1981. Permeability of Granite in a Temperature-Gradient. Journal of Geophysical Research, 86(B4): 3002–3008. doi:10.1029/JB086iB04p0300

    Article  Google Scholar 

  26. Nelias, D., Antaluca, E., Boucly, V., et al., 2007. A Three-Dimensional Semianalytical Model for Elastic-Plastic Sliding-Contacts. Journal of Tribology-Transactions of the Asme, 129(4): 761–771. doi:10.1115/1.2768076

    Article  Google Scholar 

  27. Nelias, D., Dumont, M. L., Champiot, F., et al., 1999. Role of Inclusions, Surface Roughness and Operating Conditions on Rolling Contact Fatigue. Journal of Tribology-Transactions of the Asme, 121(2): 240–251. doi:10.1115/1.2833927

    Article  Google Scholar 

  28. Nelson, L. S., 1962. Intense Rapid Heating with Flash Discharge Lamps. Science, 136(3513): 296–303. doi: 10.1126/science.136.3513.296

    Article  Google Scholar 

  29. Nelson, L. S., Kuebler, N. A., 1963. Vaporization of Tungsten Studied by Flash Heating and Kinetic Spectroscopy. 1. Near-Ultraviolet Region. Journal of Chemical Physics, 39(4): 1055. doi:10.1063/1.1734358

    Article  Google Scholar 

  30. Nelson, L. S., Richards, N. L., 1964. Use of Flash Heating to Study Combustion of Liquid Metal Droplets. Journal of Physical Chemistry, 68(5): 1268. doi:10.1021/j100787a523

    Article  Google Scholar 

  31. Noda, H., Dunham, E. M., Rice, J. R., 2009. Earthquake Ruptures with Thermal Weakening and the Operation of Major Faults at Low overall Stress Levels. Journal of Geophysical Research-Solid Earth, 114: B07302. doi:10.1029/2008JB006143

    Google Scholar 

  32. Orloff, J., 1996. Fundamental Limits to Imaging Resolution for Focused Ion Beams. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 14(6): 3759. doi:10.1116/1.588663

    Article  Google Scholar 

  33. Orloff, J., Swanson, L., 1975. Study of a Field-Ionization Source for Microprobe Applications. J. Vac. Sci. Tech., 12(6): 1209. doi:10.1116/1.568497

    Article  Google Scholar 

  34. Orloff, J., Utlaut, M., Swanson, L., 2003. High Resolution Focused Ion Beams: FIB and Its Applications. Springer. ISBN: 0-306-47350-X.

    Google Scholar 

  35. Prior, D. J., Patrick, W. T., Ursula, D. W., et al., 1996. Orientation Contrast Imaging of Microstructures in Rocks Using Forescatter Detectors in the Scanning Electron Microscope. Mineralogical Magazine, 60(403): 859–869. doi:10.1180/minmag.1996.060.403.01

    Article  Google Scholar 

  36. Rempel, A. W., Rice, J. R., 2006, Thermal Pressurization and Onset of Melting in Fault Zones. Journal of Geophysical Research-Solid Earth, 111: B09314. doi:10.1029/2006JB004314

    Article  Google Scholar 

  37. Reyntjens, S., Puers, R., 2001. A Review of Focused Ion Beam Applications in Microsystem Technology. J. Micromech. Microeng., 11(4): 287–300. doi:10.1088/0960-1317/11/4/301

    Article  Google Scholar 

  38. Rice, J. R., 1968. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, 35: 379–386. doi:10.1115/1.3601206

    Article  Google Scholar 

  39. Rice, J. R., 2006. Heating and Weakening of Faults during Earthquake Slip. Journal of Geophysical Research-Solid Earth, 111: B05311. doi:10.1029/2005JB004006

    Article  Google Scholar 

  40. Rice, J. R., Ruina, A. L., 1983. Stability of Steady Frictional Slipping. Journal of Applied Mechanics-Transactions of the Asme, 50(2): 343–349. doi:10.1115/1.3167042

    Article  Google Scholar 

  41. Ruina, A., 1983. Slip Instability and State Variable Friction Laws. Journal of Geophysical Research, 88(B12): 359–370. doi:10.1029/JB088iB12p10359

    Article  Google Scholar 

  42. Scaraggi, M., Carbone, G., Dini, D., 2011a. Lubrication in Soft Rough Contacts: A Novel Homogenized Approach. Part II-Discussion. Soft Matter, 7(21): 10407–10416. doi:10.1039/C1SM05129H

    Article  Google Scholar 

  43. Scaraggi, M., Carbone, G., Persson, B. N. J., et al., 2011b. Lubrication in Soft Rough Contacts: A Novel Homogenized Approach. Part I-Theory. Soft Matter, 7(21): 10395–10406. doi:10.1039/C1SM05128H

    Article  Google Scholar 

  44. Seal, M., 1958. The Friction of Single Crystal Diamond. Proc. R. Soc. London Ser. A, 249: 379–389

    Article  Google Scholar 

  45. Seal, M., 1965. The Friction of Diamond. Diamond Review, 25: 111–116

    Google Scholar 

  46. Seliger, R., Ward, J. W., Wang, V., et al., 1979. A High-Intensity Scanning Ion Probe with Submicrometer Spot Size. Appl. Phys. Lett., 34(5): 310. doi:10.1063/1.90786

    Article  Google Scholar 

  47. Siman-Tov, S., Aharonov, E., Sagy, A., et al., 2013. Nanograins Form Carbonate Fault Mirrrors. Geology, 41(6): 703–706. doi:10.1130/G34087.1

    Article  Google Scholar 

  48. Tapp, B., Cook, J., 2013. Pressure Solution Zone Propagation in Natually Deformed Carbonate Rocks. Geology, 16(2): 182–185. doi:10.1130/0091-7613(1988)0162.3

    Article  Google Scholar 

  49. Wang, Q. J., Chung, Y. W., 2013. Encyclopedia of Tribology. Spinger. ISBN: 978-0-387-92898-2

    Google Scholar 

  50. Wang, Q., Cheng, H. S., 1995a. A Mixed Lubrication Model for Journal Bearings with a Thin Soft Coating. 1. Contact and Lubrication Analysis. Tribology Transactions, 38(3): 654–662. doi:10.1080/10402009508983455

    Article  Google Scholar 

  51. Wang, Q., Cheng, H. S., 1995b. A Mixed Lubrication Model for Journal Bearings with a Soft Coating, Part II: Flash Temperature Analysis and Its Application to Tin Coated Al-Si Bearings. Tribology Transactions, 38: 517–524. doi: 10.1080/10402009508983437

    Article  Google Scholar 

  52. Wang, W. Z., Wang, S., Shi, F. H., et al., 2007. Simulations and Measurements of Sliding Friction between Rough Surfaces in Point Contacts: From EHL to Boundary Lubrication. Journal of Tribology-Transactions of the Asme, 129(3): 495–501. doi:10.1115/1.2736432

    Article  Google Scholar 

  53. Wang, Y. S., Wang, Q. J., Lin, C., et al., 2006. Development of a Set of Stribeck Curves for Conformal Contacts of Rough Surfaces. Tribology Transactions, 49(4): 526–535. doi:10.1080/10402000600846110

    Article  Google Scholar 

  54. Watt, I. M., 1985. The Principles and Practice of Electron Microscopy. Cambridge University Press, Cambridge. doi: 10.1111/j.1365-2818.1990.tb03026.x

    Google Scholar 

  55. Xiong, S., Wang, Q., 2012. Steady-State Hydrodynamic Lubrications Modeled with the Payvar-Salant Mass Conservation Model. Journal of Tribology, 134(3): 1–16. doi:10.1115/1.4006615

    Article  Google Scholar 

  56. Yue, Y. M., Wang, K. L., Liu, B., et al., 2013. Development of New Remote Sensing Methods for Mapping Green Vegetation and Exposed Bedrock Fractions within Heterogeneous Landscapes. International Journal of Remote Sensing, 34(14): 5136–5153. doi:10.1080/01431161.2013.787500

    Article  Google Scholar 

  57. Zhu, B. J., Liu, C., Shi, Y. L., et al., 2012. Saturated Dislocations Transient Propagation-Evolution in Olivine Structure under Ultra High-Coupled Thermal-Force Fields. Theoretical and Applied Fracture Mechanics, 58(1): 9–20. doi:10.1016/j.tafmec.2012.02.002

    Article  Google Scholar 

  58. Zhu, B. J., Qin, T. Y., 2009. 3D Modeling of Crack Growth in Electro-Magneto-Thermo-Elastic Coupled Viscoplastic Multiphase Composites. Applied Mathematical Modelling, 33: 1014–1041. doi:10.1016/j.apm.2007.12.024

    Article  Google Scholar 

  59. Zhu, B. J., Shi, Y. L., 2010. Three-Dimensional Flow Driven Pore-Crack Networks in Porous Composites: Boltzmann Lattice Method and Hybrid Hypersingular Integrals. Theoretical and Applied Fracture Mechanics, 53(1): 9–41. doi:10.1016/j.tafmec.2009.12.00

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bojing Zhu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Yuen, D.A., Shi, Y. et al. Submicron volume roughness & asperity contact friction model for principle slip surface in flash heating process. J. Earth Sci. 26, 96–107 (2015). https://doi.org/10.1007/s12583-015-0514-2

Download citation

Key Words

  • VR & AC
  • BE-LB-LG
  • submicron-scale structure measurement
  • plastic-creep model
  • friction model