Journal of Earth Science

, Volume 25, Issue 5, pp 895–900 | Cite as

The use of ground penetrating radar for mapping rock stratigraphy and tectonics: Implications for geotechnical engineering

  • Awni T. Batayneh
  • Taisser Zumlot
  • Habes Ghrefat
  • Mahmud M. El-Waheidi
  • Yousef Nazzal
Article

Abstract

This paper presents results from ground penetrating radar surveys using the SIR-10B GPR instrument (manufactured by Geophysical Survey System Inc., USA), with 400 MHz monostatic antenna (model 5 103). Survey was made over 3 excavation levels along the highway section at the Ras en Naqab escarpment area, Southwest Jordan. A total of 217 m along 4 profiles were covered in the winter of 2012. The objectives of the study are (i) to evaluate the resolution of the GPR technique in the field for detecting and locating anomalies caused by subsurface structures like cavities, fractures and faults, and (ii) to describe stratigraphic nomenclature of the subsurface rocks of the area. 2D interpretation of the obtained data and the geological information demonstrate a strong correlation between the GPR anomalies and the subsurface geology. Based upon the lateral and vertical velocity changes with depth, the thickness and orientation of the subsurface layers are outlined. Analysis of the exposed section shows good agreement between the estimated thicknesses of lithostratigraphic units and the quantitative assessment of the radar waves velocity inferred from GPR data.

Key Words

ground penetrating radar rock stratigraphy rock tectonics Ras en Naqab Jordan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Annan, A. P., Bauman, P., Greenhouse, J., et al., 1991. Geophysics and DNAPLs. Groundwater Management, 5: 963–977Google Scholar
  2. Arcone, S., Lawson, D. L., Delaney, A. J., et al., 1998. Ground-Penetrating Radar Reflection Profiling of Groundwater and Bedrock in an Area of Discontinuous Permafrost. Geophysics, 63: 1573–1584CrossRefGoogle Scholar
  3. Barjous, M., 1995. Geological Map of Petra and Wadi Al Lahyana. Map Sheet Nos. 3050 I and 3050 IV. Geological Mapping Division, Natural Resources Authority, JordanGoogle Scholar
  4. Barnhardt, W., Kayen, R., 2000. Radar Structure of Earthquake-Induced, Coastal Landslides in Anchorage, Alaska. Environmental Geosciences, 7: 38–45CrossRefGoogle Scholar
  5. Batayneh, A., Abueladas, A., Moumani, K., 2002. Use of Ground-Penetrating Radar for Assessment of Potential Sinkhole Conditions: An Example from Ghor al Haditha Area, Jordan. Environmental Geology, 41: 977–983CrossRefGoogle Scholar
  6. Batayneh, A. T., Al-Diabat, A. A., 2002. Application of 2D Electrical Tomography Technique for Investigating Landslides along Amman-Dead Sea Highway, Jordan. Environmental Geology, 42: 399–403CrossRefGoogle Scholar
  7. Batayneh, A. T., Al-Zoubi, A. S., 2000. Detection of a Solution Cavity Adjacent to a Highway in Southwest Jordan Using Electrical Resistivity Methods. Journal of Environmental and Engineering Geophysics, 5: 25–30CrossRefGoogle Scholar
  8. Batayneh, A. T., Barjous, M. O., 2003. A Case Study of Dipole-Dipole Resistivity for Geotechnical Engineering from the Ras en Naqab Area, South Jordan. Journal of Environmental and Engineering Geophysics, 8: 31–38CrossRefGoogle Scholar
  9. Batayneh, A. T., Haddadin, G. S., Toubasi, U. M., 1999. Using the Head-on Resistivity Method for Shallow Rock Fracture Investigations, Ajlun, Jordan. Journal of Environmental and Engineering Geophysics, 4: 179–184CrossRefGoogle Scholar
  10. Benson, A., 1995. Application of Ground Penetrating Radar in Assessing Some Geological Hazards: Examples of Groundwater Contamination, Faults, Cavities. Journal of Applied Geophysics, 33: 177–193CrossRefGoogle Scholar
  11. Beres, M., Haeni, F., 1991. Application of Ground-Penetrating Radar Methods in Hydrogeologic Studies. Ground Water, 29: 375–386CrossRefGoogle Scholar
  12. Birken, R., Versteeg, R., 2000. Use of Four-Dimensional Ground Penetrating Radar and Advanced Visualization Methods to Determine Subsurface Fluid Migration. Journal of Applied Geophysics, 43: 215–226CrossRefGoogle Scholar
  13. Bonomo, N., Cedrina, L., Osella, A., et al., 2009. GPR Prospecting in a Prehispanic Village, NW Argentina. Journal of Applied Geophysics, 67: 80–87CrossRefGoogle Scholar
  14. Buynevich, I. V., Fitzgerald, D. M., 2003. High-Resolution Subsurface (GPR) Imaging and Sedimentology of Coastal Ponds, Maine, USA: Implications for Holocene Back-Barrier Evolution. Journal of Sedimentary Research, 73: 559–571CrossRefGoogle Scholar
  15. Cai, J., McMechan, G., Fisher, M., 1996. Application of Ground-Penetrating Radar to Investigation of Near-Surface Fault Properties in the San Francisco Bay Region. Bulletin of Seismological Society of America, 86: 1459–1470Google Scholar
  16. Carrozzo, M. T., Leucci, G., Negri, S., et al., 2003. GPR Survey to Understand the Stratigraphy at the Roman Ships Archaeological Site (Pisa, Italy). Archaeological Prospection, 10: 57–72CrossRefGoogle Scholar
  17. Chu, D., Gordon, R. G., 1998. Current Plate Motions across the Red Sea. Geophysical Journal International, 135: 313–328CrossRefGoogle Scholar
  18. Daniels, D. J., 2004. Ground Penetrating Radar. 2nd Edition, The Institute of Electrical Engineers, London. 760CrossRefGoogle Scholar
  19. Daniels, J., Roberts, R., Vendl, M., 1995. Ground Penetrating Radar for the Detection of Liquid Contaminants. Journal of Applied Geophysics, 33: 195–207CrossRefGoogle Scholar
  20. Diabat, A., 2002. Strain Analysis of the Cretaceous Rocks in the Eastern Margin of the Dead Sea Transform, Jordan. Dirasat, 29: 159–172Google Scholar
  21. Diabat, A. A., Atallah, M., Salih, M. R., 2004. Paleostress Analysis of the Cretaceous Rocks in the Eastern Margin of the Dead Sea Transform. Journal of African Earth Sciences, 38: 449–460CrossRefGoogle Scholar
  22. Denizman, C., Brevik, E. C., Doolittle, J., 2010. Ground-Penetrating Radar Investigation of a Rapidly Developed Small Island in a Lake in Southern Georgia, USA. Journal of Cave and Karst Studies, 72: 94–99CrossRefGoogle Scholar
  23. Endres, A. L., Clement, W. P., Rudolph, D. L., 2000. Ground Penetrating Radar Imaging of an Aquifer during a Pumping Test. Ground Water, 38: 566–76CrossRefGoogle Scholar
  24. Imai, T., Sakayama, T., Kanemori, T., 1987. Use of Ground-Probing Radar and Resistivity Surveys for Archaeological Investigations. Geophysics, 52: 137–150CrossRefGoogle Scholar
  25. Joffe, S., Garfunkel, Z., 1987. Plate Kinematics of the Circum Red Sea. Are Evaluation. Tectonophysics, 141: 5–22CrossRefGoogle Scholar
  26. Klinger, Y., Avouac, J. P., Abou Karaki, N., et al., 2000. Slip Rate on the Dead Sea Transform Fault in Northern Araba Valley. Geophysical Journal International, 142: 755–768CrossRefGoogle Scholar
  27. Knight, R., 2001. Ground Penetrating Radar for Environmental Applications. Annual Review of Earth and Planetary Sciences, 29: 229–255CrossRefGoogle Scholar
  28. Liner, C., Liner, J., 1997. Application of GPR to a Site Investigation Involving Shallow Faults. Leading Edge, 16: 1649–1651CrossRefGoogle Scholar
  29. McMechan, G. A., Louks, R., Zeng, X., et al., 1998. Ground Penetrating Radar Imaging of a Collapsed Paleocave System in the Ellenburger Dolomite, Central Texas. Journal of Applied Geophysics, 39: 1–10CrossRefGoogle Scholar
  30. Mulder, W. A., ten Kroode, A. P. E., 2002. Automatic Velocity Analysis by Differential Semblance Optimization. Geophysics, 67: 1184–1191CrossRefGoogle Scholar
  31. Nobes, D. C., Ferguson, R. J., Brierley, G. J., 2001. Ground-Penetrating Radar and Sedimentological Analysis of Holocene Floodplains: Insight from the Tuross Valley, New South Wales. Australian Journal of Earth Sciences, 48: 347–355CrossRefGoogle Scholar
  32. Saarenketo, T., Scullion, T., 2000. Road Evaluation with Ground Penetrating Radar. Journal of Applied Geophysics, 43: 119–138CrossRefGoogle Scholar
  33. Shapira, A., Hofstetter, A., 1993. Source Parameters and Scaling Relationships of Earthquakes in Israel. Tectonophysics, 217: 217–226CrossRefGoogle Scholar
  34. Smith, D., 1986. Application of the Pole-Dipole Resistivity Technique to the Detection of Solution Cavities beneath Highways. Geophysics, 51: 833–837CrossRefGoogle Scholar
  35. Taner, M. T., Koehler, F., 1969. Velocity Spectra-Digital Computer Derivation and Applications of Velocity Functions. Geophysics, 34: 859–881CrossRefGoogle Scholar
  36. van Leeuwen, T., Mulder, W. A., 2008. Velocity Analysis Based on Data Correlation. Geophysical Prospecting, 56: 791–803CrossRefGoogle Scholar
  37. van Overmeeren, R., 1998. Radar Facies of Unconsolidated Sediments in the Netherlands: A Radar Stratigraphy Interpretation Method for Hydrogeology. Journal of Applied Geophysics, 40: 1–18CrossRefGoogle Scholar
  38. Vaughan, C., 1986. Ground-Penetrating Radar Surveys Used in Archaeological Investigations. Geophysics, 51: 595–604CrossRefGoogle Scholar
  39. Wolf, L., Collier, J., Tuttle, M., et al., 1998. Geophysical Reconnaissance of Earthquake-Induced Liquefaction Features in the New Madrid Seismic Zone. Journal of Applied Geophysics, 39: 121–129CrossRefGoogle Scholar
  40. Yilmaz, O., 1987. Seismic Data Processing. Society of Exploration Geophysics, Tulsa. 525Google Scholar
  41. Zain Eldeen, U., Delvaux, D., Jacobs, P., 2002. Tectonic Evolution in the Wadi Araba Segment of the Dead Sea Rift, Southwest Jordan. EGU Stephan Mueller Special Publication Series, 2: 63–81CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Awni T. Batayneh
    • 1
  • Taisser Zumlot
    • 1
  • Habes Ghrefat
    • 1
  • Mahmud M. El-Waheidi
    • 1
  • Yousef Nazzal
    • 1
  1. 1.Department of Geology and GeophysicsKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations