Journal of Earth Science

, Volume 24, Issue 2, pp 244–253 | Cite as

Taiwan’ Chi-Chi earthquake precursor detection using nonlinear principal component analysis to multi-channel total electron content records

  • Jyh-Woei Lin


This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan’s Chi-Chi earthquake of 21 September 1999 (LT) (M w=7.6). The transforms are used for ionospheric TEC from 01 August to 20 September 1999 (local time) using data from 13 GPS receivers. The data were collected at 22°N–26°N Lat. and 120°E–122°E Long.. Applying the NLPCA to the multi-channel total electron content records of GPS receivers, the earthquake-associated TEC anomalies were represented by large principal eigenvalues of NLPCA (>0.5 in a normalized set) on 14 August and 17, 18, and 20 September, with allowance given for the Dst index, which was quiet for the study period. Comparisons were then made with other researchers who also found TEC anomalies on September 17, 18, and 19 associated with the Chi-Chi earthquake, which cannot be detected by PCA. Consideration is also given for reported ground level geomagnetic field activity that occurred between mid-August and late October, leading up to and including the Chi-Chi and Chia-Yi earthquakes, which are associated with the same series of faults. It is possible that Aug. 14 is representative of an earthquake-associated TEC anomaly. This is an interesting result given how much earlier than the earthquake it occurred.

Key Words

nonlinear principal component analysis principal component analysis multi-channel total electron content records Taiwan’s Chi-Chi earthquake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Bolt, B. A., 1999. Seiamology: Resources for Teachers. Earthquake (4th Edition). W. H. Freeman and Company, New York. 366Google Scholar
  2. Chen, Y. I., Liu, J. Y., Tsai, Y. B., et al., 2004, Statistical Tests for Pre-Earthquake Ionospheric Anomaly. TAO, 15(3): 385–396Google Scholar
  3. Cybenko, G., 1989. Approximation by Superpositions of a Sigmoidal Function. Math. Control Signal & Sys., 2: 303–314CrossRefGoogle Scholar
  4. Davies, K., 1990. Ionospheric Radio. Peter Peregrinus Ltd., London. 580CrossRefGoogle Scholar
  5. Freund, F. T., 2000. Time-Resolved Study of Charge Generation and Propagation in Igneous Rocks. J. Geophys. Res., 105: 11001–11019CrossRefGoogle Scholar
  6. Freund, F. T., Kulahci, I. C., Gyr, G., et al., 2009. Air Ionization at Rock Surfaces and Pre-Earthquake Signals. J. Atmos. Sol. Terr. Phys., 71(17–18): 1824–1834, doi:10.1016/j.jastp.2009.07.013CrossRefGoogle Scholar
  7. Garcia, R., Crespon, F., Ducic, V., et al., 2005. Three-Dimensional Ionospheric Tomography of Post-Seismic Perturbations Produced by the Denali Earthquake from GPS Data. Geophys. J. Int., 163: 1049–1064, doi:0.1111/j.1365-246X.2005.02775.xCrossRefGoogle Scholar
  8. Hayakawa, M., 2007. VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes. Sensors, 7(7): 1141–1158, doi:10.3390/s7071141CrossRefGoogle Scholar
  9. Hegai, V. V., Kim, V. P., Liu, J. Y., 2006. The Ionospheric Effect of Atmospheric Gravity Waves Excited Prior to Strong Earthquake. Advance in Space Research, 37: 653–659CrossRefGoogle Scholar
  10. Heki, K., Otsuka, Y., Choosakul, N., et al., 2006. Detection of Ruptures of Andaman Fault Segments in the 2004 Great Sumatra Earthquake with Coseismic Ionospheric Disturbances. J. Geophys. Res., 111(B09313): 11, doi:10.1029/2005JB004202, 2006Google Scholar
  11. Hsiao, C. C., Liu, J. Y., Oyama, K. I., et al., 2010. Seismo-Ionospheric Precursor of the 2008 M w 7.9 Wenchuan Earthquake Observed by FORMOSAT-3/COSMIC. GPS Solutions, 14(1): 83–89, doi:10.1007/s10291-009-0129-0CrossRefGoogle Scholar
  12. Jhuang, H. K., Ho, Y. Y., Kakinami, Y., et al., 2010. Seismo-Ionospheric Anomalies of the GPS-TEC Appear before the 12 May 2008 Magnitude 8.0 Wenchuan Earthquake. Int. J. Remote Sens., 31(13): 3579–3587, doi:10.1080/01431161003727796CrossRefGoogle Scholar
  13. Kakinami, Y., Liu, J. Y., Tsai, L. C., et al., 2010. Ionospheric Electron Content Anomalies Detected by a FORMOSAT-3/COSMIC Empirical Model before and after the Wenchuan Earthquake. Int. J. Remote Sens., 31(13): 3571–3578, doi:10.1080/01431161003727788CrossRefGoogle Scholar
  14. Kramer, M. A., 1991. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AIChE Journal, 37(2): 233–243CrossRefGoogle Scholar
  15. Li, J., Shen, W., 2011. Investigation of the Co-Seismic Gravity Field Variations Caused by the 2004 Sumatra-Andaman Earthquake Using Monthly GRACE Data. Journal of Earth Science, 22(2): 280–291, doi:10.1007/s12583-011-0181-xCrossRefGoogle Scholar
  16. Lin, J. W., 2010a. Ionospheric Total Electron Content (TEC) Anomalies Associated with Earthquakes through Karhunen-Loéve Transform (KLT). Terr. Atmos. Ocean. Sci., 21(2): 253–265, doi:10.3319/TAO.2009.06.11.01(T)CrossRefGoogle Scholar
  17. Lin, J. W., 2010b. Two-Dimensional Ionospheric Total Electron Content Map (TEC) Seismo-Ionospheric Anomalies through Image Processing Using Principal Component Analysis. Advances in Space Research, 45: 1301–1310, doi:10.1016/j.asr.2010.01.029CrossRefGoogle Scholar
  18. Lin, J. W., 2012. Potential Reasons for Ionospheric Anomalies Immediately Prior to China’s Wenchuan Earthquake on 12 May 2008 Detected by Nonlinear Principal Component Analysis. International Journal of Applied Earth Observations and Geoinformation, 14: 178–191, doi:10.1016/j.jag.2011.09.011CrossRefGoogle Scholar
  19. Liperovskaya, E. V., Meister, C. V., Parrot, M., et al., 2006. On Es-Spread Effects in the Ionosphere Connected to Earthquakes. Natural Hazard and Earth System Sciences, 6(5): 741–744CrossRefGoogle Scholar
  20. Liu, J. Y., Chen, Y. I., Chuo, Y. J., et al., 2006. A Statistical Investigation of Pre-Earthquake Ionospheric Anomaly. J. Geophys. Res., 111(A05304): 5, doi:10.1029/2005JA 011333Google Scholar
  21. Liu, J. Y., Chen, Y. I., Chuo, Y. J., et al., 2001. Variations of Ionospheric Total Electron Content during the Chi-Chi Earthquake. Geophysical Research Letters, 28(7): 1383–1386CrossRefGoogle Scholar
  22. Liu, Z. Z., Gao, Y., 2004. Ionospheric TEC Predictions over a Local Area GPS Reference Network. GPS Solutions, 8(1): 23–29, doi:10.1007/s10291-004-0082-xCrossRefGoogle Scholar
  23. Lorne, B., Perrier, F., Avouac, J. P., 1999. Streaming Potential Measurements 2. Relationship between Electrical and Hydraulic Flow Patterns from Rock Samples during Deformation. J. Geophys. Res., 104(B8): 17879–17896, doi:10. 1029/1999JB900155CrossRefGoogle Scholar
  24. Nishihashi, M., Hattori, K., Jhuang, H. K., et al., 2009, Possible Spatial Extent of Ionospheric GPS-TEC and NmF2 Anomalies Related to the 1999 Chi-Chi and Chia-Yi Earthquakes in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 20: 779–789CrossRefGoogle Scholar
  25. Pulinets, S. A., 2004. Ionospheric Precursors of Earthquakes: Recent Advances in Theory and Practical Applications. TAO, 15(3): 413–435Google Scholar
  26. Pulinets, S., Boyarchuk, K., 2004. Ionospheric Precursors of Earthquakes. Springer-Verlag, Berlin, Heidelberg. 315Google Scholar
  27. Pulinets, S. A., Gaivoronska, T. B., Leyva Contreras, A., et al., 2004. Correlation Analysis Technique Revealing Ionospheric Precursors of Earthquakes. Natural Hazard and Earth System Sciences, 4: 697–702CrossRefGoogle Scholar
  28. Shen, W., Wang, D., Hwang, C., 2011. Anomalous Signals Prior to Wenchuan Earthquake Detected by Superconducting Gravimeter and Broadband Seismometers Records. Journal of Earth Science, 22(5): 640–651, doi:10.1007/s12583-011-0215-4CrossRefGoogle Scholar
  29. Tsai, Y. B., Liu, J. Y., Ma, K. F., et al., 2006. Precursory Phenomena Associated with 1999 Chi-Chi Earthquake in Taiwan as Identified under the iSTEP Program. Phys. Chem. Earth, 31: 365–377, doi:10.1016/j.pce.2006.02.035CrossRefGoogle Scholar
  30. Uyeda, S., Kamogawa, M., Tanaka, H., 2009. Analysis of Electrical Activity and Seismicity in the Natural Time Domain for the Volcanic-Seismic Swarm Activity in 2000 in the Izu Island Region. Japan J. Geophys. Res., 114(B02310): 10, doi:10.1029/2007JB005332Google Scholar
  31. Varotsos, P., Alexopoulos, K., 1984a. Physical Properties of the Variations of the Electric Field of the Earth Preceding Earthquakes. Tectonophysics, 110: 73–98CrossRefGoogle Scholar
  32. Varotsos, P., Alexopoulos, K., 1984b. Physical Properties of the Variations of the Electric Field of the Earth Preceding Earthquakes, II. Determination of Epicenter and Magnitude. Tectonophysics, 110(1–2): 99–125CrossRefGoogle Scholar
  33. Varotsos, P., Lazaridou, M., 1991. Latest Aspects of Earthquake Prediction in Greece Based on Seismic Electric Signals. Tectonophysics, 188: 321–347CrossRefGoogle Scholar
  34. Varotsos, P., Sarlis, N., Lazaridou, M., et al., 1998. Transmission of Stress Induced Electric Signals in Dielectric Media. J. Appl. Phys., 83(1): 60–70, doi:10.1063/1.366702CrossRefGoogle Scholar
  35. Varotsos, P. A., Sarlis, N. V., Skordas, E. S., 2002. Long-Range Correlations in the Electric Signals that Precede Rupture. Phys. Rev. E, 66(011902), doi:10.1103/PhysRevE.66.011902Google Scholar
  36. Varotsos, P. A., Sarlis, N. V., Skordas, E. S., et al., 2005. Natural Entropy Fluctuations Discriminate Similar Looking Electric Signals Emitted from Systems of Different Dynamics. Phys. Rev. E, 71(011110): 11, doi:10.1103/PhysRevE.71.011110Google Scholar
  37. Varotsos, P. A., Sarlis, N. V., Skordas, E. S., et al., 2006a. Entropy of Seismic Electric Signals: Analysis in Natural Time under Time Reversal. Phys. Rev. E, 73(031114): 8, doi:10.1103/PhysRevE.73.031114Google Scholar
  38. Varotsos, P. A., Sarlis, N. V., Skordas, E. S., et al., 2006b. Attempt to Distinguish Long-Range Temporal Correlations from the Statistics of the Increments by Natural Time Analysis. Phys. Rev. E, 74(021123), doi:10.1103/Phys RevE.74.021123Google Scholar
  39. Voitov, G. I., Dobrovolsky, I. P., 1994. Chemical and Isotopic-Carbon Instabilities of the Native Gas Flows in Seismically Active Regions. Izvestiya Earth Science, 3: 20–31Google Scholar
  40. Yen, H. Y., Chen, C. H., Yeh, Y. H., et al., 2004. Geomagnetic Fluctuations during the 1999 Chi-Chi Earthquake in Taiwan. Earth Planets Space, 56: 39–45Google Scholar
  41. Yue, L. F., Suppe, J., Hung, J. H., 2005. Structural Geology of a Classic Thrust Belt Earthquake: The 1999 Chi-Chi Earthquake Taiwan (M w=7.6). Journal of Structural Geology, 27(11): 2058–2083, doi:10.1016/j.jsg.2005.05.020CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Earth Science & Institute of GeoscienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations