Advertisement

Journal of Earth Science

, Volume 24, Issue 1, pp 111–124 | Cite as

Impacts of human activities on the occurrence of groundwater nitrate in an alluvial plain: A multiple isotopic tracers approach

  • Zhonghe Pang (庞忠和)
  • Lijuan Yuan (袁利娟)
  • Tianming Huang (黄天明)
  • Yanlong Kong (孔彦龙)
  • Jilai Liu (刘记来)
  • Yiman Li (李义曼)
Article

Abstract

Nitrate pollution is a severe problem in areas with intensive agricultural activities. This study focuses on nitrate occurrence and its constraints in a selected alluvial fan using chemical data combined with environmental isotopic tracers (18O, 3H, and 15N). Results show that groundwater nitrate in the study area is as high as 258.0 mg/L (hereafter NO3 ) with an average of 86.8 mg/L against national drinking water limit of 45 mg/L and a regional baseline value of 14.4 mg/L. Outside of the riparian zone, nitrate occurrence is closely related to groundwater circulation and application of chemical fertilizer. High groundwater nitrate is found in the recharge area, where nitrate enters into groundwater through vertical infiltration, corresponding to high 3H and enriched 18O in the water. In the riparian zone, on the contrary, the fate of groundwater nitrate is strongly affected by groundwater level. Based on two sampling transects perpendicular to the riverbank, we found that the high level of nitrate corresponds to the deeper water table (25 m) near the urban center, where groundwater is heavily extracted. Groundwater nitrate is much lower (<12.4 mg/L) at localities with a shallow water table (5 m), which is likely caused by denitrification in the aquifer.

Key Words

nitrate alluvial plain environmental isotope fertilizer application groundwater exploitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Aravena, R., Robertson, W. D., 1998. Use of Multiple Isotope Tracers to Evaluate Denitrification in Ground Water: Study of Nitrate from a Large-Flux Septic System Plume. Ground Water, 36(6): 975–982, doi:10.1111/j.1745-6584.1998.tb02104.xCrossRefGoogle Scholar
  2. Böhlke, J. K., 2002. Groundwater Recharge and Agricultural Contamination. Hydrogeology Journal, 10(1): 153–179, doi:10.1007/s10040-001-0183-3CrossRefGoogle Scholar
  3. Böttcher, J., Strebel, O., Voerkelius, S., et al., 1990. Using Isotope Fractionation of Nitrate-Nitrogen and Nitrate-Oxygen for Evaluation of Microbial Denitrification in a Sandy Aquifer. Journal of Hydrology, 114(3–4): 413–424CrossRefGoogle Scholar
  4. Bethke, C. M., Johnson, T. M., 2008. Groundwater Age and Groundwater Age Dating. Annual Review of Earth and Planetary Sciences, 36: 121–152CrossRefGoogle Scholar
  5. Burkart, M. R., Kolpin, D. W., 1993. Hydrologic and Land-Use Factors Associated with Herbicides and Nitrate in Near-Surface Aquifers. Journal of Environmental Quality, 22(4): 646–656CrossRefGoogle Scholar
  6. Chen, J. Y., Tang, C. Y., Sakura, Y., et al., 2005. Nitrate Pollution from Agriculture in Different Hydrogeological Zones of the Regional Groundwater Flow System in the North China Plain. Hydrogeology Journal, 13(3): 481–492, doi:10.1007/s10040-004-0321-9CrossRefGoogle Scholar
  7. Chen, J. Y., Tang, C. Y., Sakura, Y., et al., 2004. Spatial Geochemical and Isotopic Characteristics Associated with Groundwater Flow in the North China Plain. Hydrological Processes, 18(16): 3133–3146, doi:10.1002/hyp.5753CrossRefGoogle Scholar
  8. Chen, J. Y., Tang, C. Y., Shen, Y. J., et al., 2003. Use of Water Balance Calculation and Tritium to Examine the Dropdown of Groundwater Table in the Piedmont of the North China Plain (NCP). Environmental Geology, 44(5): 564–571, doi:10.1007/s00254-003-0792-3CrossRefGoogle Scholar
  9. Chen, Z. Y., Qi, J. X., Xu, J. M., et al., 2003. Paleoclimatic Interpretation of the Past 30 ka from Isotopic Studies of the Deep Confined Aquifer of the North China Plain. Applied Geochemistry, 18(7): 997–1009CrossRefGoogle Scholar
  10. Chen, Z. Y., Wang, Y., Liu, J., et al., 2010. Groundwater Changes of Selected Groundwater Systems in Northern China in Recent Fifty Years. Quaternary Sciences, 30(1): 115–126, doi:10.3969/j.issn.1001-7410.2010.01.11Google Scholar
  11. Chesnaux, R., Allen, D. M., Graham, G.., 2007. Assessment of the Impact of Nutrient Management Practices on Nitrate Contamination in the Abbotsford-Sumas Aquifer. Environmental Science & Technology, 41: 7229–7234CrossRefGoogle Scholar
  12. Domagalski, J., Zhou, X. Q., Lin, C., et al., 2001. Comparative Water-Quality Assessment of the Hai He River Basin in the People’s Republic of China and Three Similar Basins in the United States. US Dept. of the Interior, US Geological Survey, Washington D.C.Google Scholar
  13. Eckhardt, D. A. V., Stackelberg, P. E., 1995. Relation of Ground-Water Quality to Land Use on Long Island, New York. Ground Water, 33(6): 1019–1033, doi:10.1111/j.1745-6584.1995.tb00047.xCrossRefGoogle Scholar
  14. Hu, C. S., Cheng, Y. S., Lu, G., et al., 2001. On the Nitrate-N Accumulated Characteristics in Deep Soil Layer of Winter Wheat Field in Taihang Piedmont. Chinese Journal of Eco-Agriculture, 9: 19–20Google Scholar
  15. Kim, K. H., Yun, S. T., Choi, B. Y., et al., 2009. Hydrochemical and Multivariate Statistical Interpretations of Spatial Controls of Nitrate Concentrations in a Shallow Alluvial Aquifer around Oxbow Lakes (Osong Area, Central Korea). Journal of Contaminant Hydrology, 107(3–4): 114–127CrossRefGoogle Scholar
  16. Liu, C. M., Yu, J. J., Kendy, E., 2001. Groundwater Exploita tion and Its Impact on the Environment in the North China Plain. Water International, 26(2): 265–272, doi:10.1080/02508060108686913CrossRefGoogle Scholar
  17. Lu, Y. T., Tang, C. Y., Chen, J. Y., et al., 2008. Spatial Characteristics of Water Quality, Stable Isotopes and Tritium Associated with Groundwater Flow in the Hutuo River Alluvial Fan Plain of the North China Plain. Hydrogeology Journal, 16(5): 1003–1015, doi:10.1007/s10040-008-0292-3CrossRefGoogle Scholar
  18. McLay, C. D. A., Dragten, R., Sparling, G., et al., 2001. Predicting Groundwater Nitrate Concentrations in a Region of Mixed Agricultural Land Use: A Comparison of Three Approaches. Environmental Pollution, 115(2): 191–204CrossRefGoogle Scholar
  19. Mengis, M., Schif, S. L., Harris, M., et al., 1999. Multiple Geochemical and Isotopic Approaches for Assessing Ground Water NO3 Elimination in a Riparian Zone. Ground Water, 37(3): 448–457, doi:10.1111/j.1745-6584.1999.tb01124.xCrossRefGoogle Scholar
  20. Rivett, M. O., Buss, S. R., Morgan, P., et al., 2008. Nitrate Attenuation in Groundwater: A Review of Biogeochemical Controlling Processes. Water Research, 42(16): 4215–4232CrossRefGoogle Scholar
  21. Silva, S. R., Kendall, C., Wilkison, D. H., et al., 2000. A New Method for Collection of Nitrate from Fresh Water and the Analysis of Nitrogen and Oxygen Isotope Ratios. Journal of Hydrology, 228(1–2): 22–36CrossRefGoogle Scholar
  22. Wang, B. G., Jin, M. G., Nimmo, J. R., et al., 2008. Estimating Groundwater Recharge in Hebei Plain, China under Varying Land Use Practices Using Tritium and Bromide Tracers. Journal of Hydrology, 356(1–2): 209–222CrossRefGoogle Scholar
  23. Wang, S. Q., Song, X. F., Wang, Q. X., et al., 2009. Shallow Groundwater Dynamics in North China Plain. Journal of Geographical Sciences, 19: 175–188CrossRefGoogle Scholar
  24. Xu, Q. H., Wu, C., Yang, X. L., et al., 1996. Palaeochannels on the North China Plain: Relationships between Their Development and Tectonics. Geomorphology, 18(1): 27–35CrossRefGoogle Scholar
  25. Zhang, W. L., Tian, Z. X., Zhang, N., et al., 1996. Nitrate Pollution of Groundwater in Northern China. Agriculture Ecosystems & Environment, 59(3): 223–231CrossRefGoogle Scholar
  26. Zhang, Y. M., Hu, C. S., Mao, R. Z., et al., 2003. Nitrogen, Phosphorus and Potassium Cycling and Balance in Farmland Ecosystem at the Piedmont of Taihang. Chinese Journal of Applied Ecology, 14: 1863–1867Google Scholar
  27. Zhao, S. H., 2010. Sustainable Utilization of Groundwater Resource at Tangshan. Haihe Water Resources, 4: 8–30 (in Chinese)Google Scholar
  28. Zhou, S. L., Wu, Y. C., Wang, Z. M., et al., 2008. The Nitrate Leached below Maize Root Zone is Available for Deep-Rooted Wheat in Winter Wheat-Summer Maize Rotation in the North China Plain. Environmental Pollution, 152(3): 723–730CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhonghe Pang (庞忠和)
    • 1
  • Lijuan Yuan (袁利娟)
    • 1
    • 2
  • Tianming Huang (黄天明)
    • 1
  • Yanlong Kong (孔彦龙)
    • 1
    • 2
  • Jilai Liu (刘记来)
    • 3
  • Yiman Li (李义曼)
    • 1
    • 2
  1. 1.Key Laboratory of Engineering Geomechanics, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Hydrogeology and Engineering Geology Team of BeijingBeijingChina

Personalised recommendations